Tag Archive for: Skin Sensitization

Quantitative Sensitizing Potency Assessment Using GARD™skin Dose-Response

Poster presented at SOT 2021

Henrik Johansson, Robin Gradin, Andy Forreryd, Joshua Schmidt
SenzaGen AB, Lund, Sweden. SenzaGen Inc., Raleigh, NC.

Download a copy

 

Conclusion

  • As an adaptation from the GARDskin assay, GARDskin Dose-Response is suitable for quantitative skin sensitizing potency assessment of chemicals.
  • The experimental readout, referred to as cDV0, corresponds to the lowest dose required to elicit a positive response in GARDskin. As such, experimental protocols are analogous to the LLNA, in which the cDV0 corresponds to the EC3-value.
  • The cDV0 may be used to directly monitor sensitizing potency, or further used to extrapolate LLNA EC3-values, estimation of Human potency categories, or CLP 1A/1B classifications.

Abstract

Proactive identification and characterization of sensitization hazards are central aspects of risk assessment of chemicals. Current legislations and trends in predictive toxicology advocate a transition from in vivo methods to non-animal alternatives, with a number of methods for hazard assessment of skin sensitizers currently available. However, non-animal methods capable of providing quantitative assessment of sensitizing potency are currently lacking.

The GARDskin assay is a next-generation in vitro assay for hazard assessment of skin sensitizers, currently progressing towards regulatory acceptance. Recently, the GARDskin Dose-Response (DR) testing strategy was introduced, in which test chemicals are evaluated by the GARDskin assay in a titrated range of concentrations, in order to investigate the dose-response relationship between GARDskin classifications and test chemical concentration. As such, it provides a quantitative estimation of sensitizing potency, referred to as cDV0, which corresponds to the least required dose able to generate a positive response in the GARDskin assay. The cDV0 value obtained for a test chemical may be viewed as an analogue to the LLNA EC3 value, based on which further hazard characterization and risk assessment may be performed. Statistically significant correlation between the GARDskin DR cDV0 and the LLNA EC3, as well as with human No Expected Sensitization Induction level (NESIL) estimations has been confirmed, thus enabling direct extrapolation between the different metrics.

Here, we further introduce the GARDskin DR protocols, as proposed in a standardized testing strategy. By studying a concentration range of 6 concentration points titrated from the experimentally derived GARD input concentration in biological duplicates, a test chemical-specific cDV0 is established by linear interpolation. We illustrate how these results can be used on their own to facilitate direct potency-associated ranking of test chemicals. Furthermore, we demonstrate how obtained cDV0 values can be extrapolated to LLNA EC3 values with a 95% confidence interval, thereby also facilitating potency-associated subcategorization of test chemicals according to UN GHS classification criteria. Lastly, we illustrate how results generated with GARDskin DR can be directly incorporated into existing strategies for Quantitative Risk Assessment using an entirely in vitro setup.

 

GARDskin and GARDpotency: a proof of concept study to investigate the applicability domain for agrochemical formulations

Joint poster with Corteva,
Presented at the 2021 SOT Virtual Conference

M. Corvaro, J. Henriquez, R. Settivari, U.T. Mattson, S. Gehen | Corteva Agriscience Italia, Rome, ITA; Corteva Agriscience, Indianapolis, IN, USA;  Corteva Agriscience, Newark, DE, USA; SenzaGen AB, Lund, SWE

 

Download a copy

 

Conclusion

  • GARDskin and GARDpotency, showed a satisfactory performance in this initial proof of concept.
  • The accuracy, sensitivity, and specificity for prediction of hazard were 77.8% (14/18), 87.5% (7/8) and 70.0% (7/10), when using available LLNA results as classification reference.
  • Where the GARDskin correctly predicted hazard category, the GARDpotency of GHS potency was correct in 6/7 cases, with 1 underpredicted formulation

Abstract

In vitro methods for detection of delayed dermal sensitization have been formally validated for regulatory use in the last two decades as an alternative to the animal use. Some methods have reached regulatory acceptance as OECD test guidelines. The Genomic Allergen Rapid Detection (GARD™) is a genomic based assay platform which is currently being assessed for inclusion in the OECD test guideline program. GARD is available in the two variants, GARDskin and GARDpotency, addresses Key Event 3 (dendritic cell activation) of the skin sensitization Adverse Outcome Pathway (AOP), and provides reliably potency information for several chemical classes.

Understanding of the applicability domain of test methods is pivotal in providing confidence in assay outcomes, facilitating regulatory uptake in specific industry sectors. The purpose of this work is to verify the applicability domain of GARDskin and GARDpotency, for the product class of agrochemical formulations.

For this proof of concept, 20 agrochemical formulations were tested using GARDskin. When GARDskin was positive, GARDpotency assay was used to determine the severity of sensitization potential. Tests were conducted according to the assay developer Standard Operating Procedures. The selected agrochemical formulations were liquid (11 water based; and 9 organic solvent based) with a balanced distribution (11 not classified; 7 GHS cat 1B; 2 GHS cat 1A, which is rare for agrochemical formulations). GARD results (available for 18 formulations at this time) were compared with in vivo data (mouse LLNA) already available for registration purpose, in order to verify concordance (GHS hazard and potency categories). For hazard, GARDskin was able to correctly identify 7/10 not classified (true negatives) and 7/8 GHS1B/1A (true positives), with 1 false negative and 3 false positives. The accuracy, sensitivity, and specificity for prediction of hazard were 77.8% (14/18), 87.5% (7/8) and 70.0% (7/10), when using available LLNA results as classification reference. Additionally, GARDpotency was able to correctly identify 5 GHS cat 1B and 1 GHS cat 1A out of 7 correctly predicted sensitizer (underprediction from 1A to 1B occurred in 1 case).

In conclusion, GARDskin and GARDpotency, showed a satisfactory performance in this initial proof of concept.

Applicability of GARD™skin for Accurate Assessment of Challenging Substances in the Context of Skin Sensitization Testing

Poster presented at ACT 2020

J. Schmidt, A. Forreryd, H. Johansson, J. Li, A. Johansson
SenzaGen, Inc., Raleigh, NC, USA, SenzaGen AB, Lund, Sweden

Link to the poster

 

Conclusion

  • GARDskin demonstrated an overall high applicability for the evaluated challenging substances with 80% predictive accuracy compared to existing human data.
  • GARDskin demonstrated excellent applicability for pre/pro-haptens and low water solubility substances, correctly classifying all such compounds in the herein investigated dataset.
  • GARDskin also showed high applicability for assessment of surfactants with 89% predictive accuracy compared to existing human data, correctly classifying 8 out of 9 internally tested surfactants, including well known challenging ones such as Sodium Dodecyl Sulphate (SDS) and Benzalkonium chloride.

Abstract

Current legislations and trends in predictive toxicology advocate a transition from in vivo methods for hazard and risk assessments to non-animal alternatives. However, certain groups of chemicals, including substances with severe membrane-damaging properties, pre- and pro-haptens, and those with high log P ratios, have been shown to be challenging to assess using cell-based assays in the context of skin sensitization testing. The aim of this study was to evaluate the applicability of GARDskin for such challenging substances, using an overlapping subset of chemicals previously tested in an integrated tested strategy (ITS) based on validated, aqueous in vitro assays, as well as in a series of Reconstructed Human Epidermis (RHE)-based assays.

The GARDskin assay (Genomic Allergen Rapid Detection) is a robust in vitro assay for identification of potential chemical skin sensitizers with over 90% prediction accuracy and broad applicability. The assay is included in the OECD Test Guideline Program (OECD TGP 4.106) and has gone through a formal validation study. The assay evaluates the gene expression of endpoint-specific genomic biomarkers in a human dendritic-like cell line following exposure to the test substance. Exposure-induced gene expression patterns are analysed using pattern recognition and machine-learning technology, providing classifications of each test item as a skin sensitizer or a non-sensitizer.

The applicability of GARDskin for a total of twelve challenging substances, including pre- and pro-haptens, low water-soluble substances, two surfactants and three additional substances known to have conflictive results when comparing in vitro and in vivo data were evaluated in this study. All twelve substances were selected from the Mehling et al. 2019 publication which reported results from three OECD validated in vitro methods, the “2 out of 3” Integrated Testing Strategy, three RHE-based models and the murine local lymph node assay (LLNA). Human potency classification was available for ten out of the twelve substances.

The GARDskin prediction results were reported from previously published studies, or from in house validation studies. Predictive accuracies were calculated by comparing skin sensitization classifications from different test methods to the available human data of each substance respectively. (N=10). To further explore and substantiate the GARDskin applicability for surfactants, additional GARDskin data for a total of nine surfactants are presented in order to complement the Mehling dataset with respect to the availability of human data.

The GARDskin assay demonstrated overall high applicability for the evaluated challenging substances, with 80% predictive accuracy compared to existing human data. GARDskin correctly classified all pre-and pro-haptens and low water-soluble substances in the data set. Furthermore, high applicability of GARDskin for severe membrane disruptive substances such as surfactants was demonstrated, with 89% predictive accuracy compared to existing human data.

 

Exploration of the GARD applicability domain – Skin sensitization assessment of UVCBs

Poster presented at Eurotox 2018 in collaboration with Lubrizol

Download a copy

U. I.Torstensdotter Mattson1, C. Humfrey2, O. Larne1, H. Johansson1, L. Sweet3 1SenzaGen, Lund, Sweden, 2Lubrizol, Derbyshire, United Kingdom, 3Lubrizol, Ohio, United States of America

Conclusion

This case study demonstrates the broadening of the applicability domain of the GARD assay when assessing UVCBs.

Abstract

In this study, four test items were evaluated. All the test items were “Unknown or Variable composition, Complex reaction products and Biological materials” materials (UVCBs), which were provided by Lubrizol and selected based on existing in vivo data (internal Lubrizol data). Skin sensitizing hazard was assessed using the GARDskin assay, and the GARDpotency assay for further subcategorized the sensitizers into strong 1 A) or weak 1 B) sensitizers according to GHS/CLP classification. The GARDskin predictions for test items 1, 2, 3 and the GARDpotency classifications for test item 2 and 3 were consistent with the in vivo data, whereas test item 4 showed inconsistency between the in vitro and in vivo methods. These results indicate the importance of screening a panel of different vehicles or mixtures thereof, in order to choose the appropriate solvent For one of the Test items, the DMSO extraction procedure generates a negative prediction while the experimental vehicle mixture, Glycerol and DMF, classifies the chemical as a skin sensitizer This case study demonstrates the broadening in applicability domain of the GARDassays when assessing UVCBs.