Joint poster with L’Oreal: Point of Departure for risk assessment

Improved Confidence of Quantitative Sensitizing Potency Assessment for Point of Departure Using GARD®skin Dose-Response


Presented at SOT and Eurotox 2024

Download a copy in PDF

 

Conclusion

In conclusion, the readouts from GARDskin Dose-Response derive a quantitative continuous potency estimate of skin sensitizers that may be used directly as a PoD for a seamless integration into downstream NGRA.

Abstract

Identification of skin sensitization hazard and potency characterization are central aspects of risk assessment of chemicals. Current legislation advocates a transition from hazard assessment using in vivo methods to UN GHS potency subclassification and quantitative risk assessment by use of New Approach Methodologies (NAM:s) as well as Defined Approaches (DA). However, the ability of NAM assays to quantitatively estimate sensitizing potency and thereby establish a point of departure (POD) for next-generation risk assessment (NGRA) strategies is currently lacking.

To this end, the GARDskin Dose-Response (DR) method, adapted from the OECD TG 442E method GARDskin, was recently introduced. The GARDskin DR method evaluates test chemicals in a titrated range of concentrations, in order to investigate the dose-response relationship between the output from the GARDskin prediction algorithm (Decision Values; DV:s) and test chemical concentration. The combined information can be used to derive a quantitative estimation of sensitizing potency, defined as the cDV0-value, i.e, the least required dose required to elicit a positive response by the prediction model.

The current work focuses on optimizing the ability of GARDskin DR to derive a quantitative POD based on conversion to a composite Potency Value (PV; µg/cm2), taking into account both human and in vivo reference data sources. A total of 25 chemicals were used to construct predictive regression models fitted to reference PV:s. Results show that the updated models fitted to reference PV:s produced more accurate potency predictions compared with models fitted with, and aiming to predict, only LLNA EC3 and NOEL, respectively. Mean fold-change errors ranged between 2.8 and 3.2, with predicted POD:s being within or close to the range of the variation of the historical in vivo data. In addition, uncertainty in predictions was reduced, as estimated by a minimum 2-fold reduction of 95%-confidence intervals, when comparing models fitted to reference PV:s with models fitter with only LLNA EC3 and human NOEL, respectively.

In conclusion, these improvements constitute a major step forward for the ability of NAM:s to assess quantitative sensitizing potency. It demonstrates how GARDskin Dose-Response can accurately estimate a POD and be incorporated into downstream strategies for quantitative risk assessment (QRA), to ultimately contribute to the assessment of safe use levels of chemicals.

Keywords: NAM, GARDskin Dose-Response, Sensitizing potency, Quantitative risk assessment, Point of departure

Joint poster with RIFM and IFF: In vitro Skin Sensitization Potency Prediction Performance on the RCPL list

GARD®skin Dose-Response for skin sensitizing potency assessment: Performance on the Reference Chemical Potency List (RCPL)


Presented at BTS 2024.

Download a copy in PDF

 

Conclusion

  • This study suggests that GARDskin Dose-Response is a potent predictor of skin sensitizing potency on a continuous scale.
  • Predicted potency values are in µg/cm2 and can be used for risk assessment and to establish a maximum allowable concentration of a sensitizer in various consumer products.

Abstract

New Approach methods (NAMs) for assessment of skin sensitizing hazard and GHS potency have been adopted as OECD Test Guidelines. However, NAMs able to estimate skin sensitization potency on a continous scale, and thereby generating data for use as a point of departure (PoD) in next-generation risk assessment (NGRA) strategies, are currently lacking.

GARDskin Dose-Response (DR) is based on the validated protocols of GARDskin (OECD TG 442E). The readout of the assay is a continous potency prediction, or a No Expected Sensitization Induction Level (NESIL) value (ug/cm2).

The aim of this study was to evaluate the performance of the potency predictions from GARDskin DR using the chemicals in the Reference Chemical Potency List (RCPL) as a reference. The RCPL contains curated Potency Values (PVs) and was developed to serve as a resource for evaluating potency predictions from NAM-based approaches.

GARDskin data was generated (n=27 chemicals) and potency predictions were compared to PV values from the RCPL list. The continous potency predictions from GARDskin DR correlated well with PVs (p: 0.74), with an average misprediction of 3.7-fold from reference values. Furthermore, GARDskin DR provided a very similar potency ranking compared to the ranking based on PV values in the RCPL list (ρ: 0.69).

In conclusion, based on the results in this study, GARDskin DR was demonstrated to be a potent predictor of skin sensitizing potency, increasing the confidence in using the assay to conduct NGRA on new chemical entities, ultimately reducing the need for confirmatory human and/or animal studies.

Keywords: NAM, GARDskin Dose-Response, Sensitizing potency, Quantitative risk assessment, Point of departure

Joint poster with Takasago: Determining safe use level for novel fragrance ingredients

Practical application of the GARD®skin Dose-Response assay to derive a No Expected Sensitization Induction Level (NESIL) value for confirmatory human patch studies to determine safe use level for novel fragrance ingredients


Presented at ACT 2023

Download a copy

 

Summary

  • Combining the results from the GARD®skin Dose-Response assay with other NAMs enables weight-of-evidence based approaches to determine safe use levels of novel fragrance ingredients.
  • Based on the results from the weight-of-evidence approach, confirmatory human patch test and HRIPT are conducted. HRIPT is performed at the top concentration of 11250ug/cm2. Both results are negative, confirming the predicted NESIL-value from GARD®.

 

Abstract

Skin sensitization is one of the required endpoints for the development and registration of novel fragrance ingredients. Traditionally, assessment has been performed combining in vitro and in vivo assays, but recent developments has shifted to the use of New Approach Methodologies (NAMs), without need for in vivo methods. However, none of the proposed NAMs are currently validated for continuous potency predictions, which is required for quantitative risk assessments of novel fragrance ingredients.

The GARD®skin assay (OECD TG 442E) is a genomics-based assay for hazard identification of sensitizers. To meet the need for quantitative potency information, GARD®skin Dose-Response has been developed based on the validated protocols of GARD®skin and generates a dose-response curve to identify the lowest concentration of a test compound required to elicit a positive classification (cDV0-value). These values correlate significantly to LLNA EC3 and human NESIL values.

This study presents the use of the GARDskin Dose-Response assay to determine safe human user levels for one novel fragrance ingredient. The experimentally predicted NESIL value was determined to 37800µg/cm2. Using a weight-of- evidence approach mainly guided by the quantitative data from the GARDskin Dose-Response, confirmatory Human Repeated Insult Patch Testing (HRIPT) studies were conducted and at the tested concentrations, no sensitization reactions were observed. In conclusion, this study expands the toxicologist´s toolbox and illustrates the potential to use the GARDskin Dose-Response assay to derive NESIL values that are protective of human health, without having to rely on the Dermal Sensitization Threshold (DST) approach or reverting to traditional animal testing approaches.

Joint poster with RIFM and IFF: PoD for NGRA, a case study using isocyclocitral

The GARDskin Dose-Response assay for determination of a point-of-departure (PoD) for Next Generation Risk Assessment (NGRA) of skin sensitizers: A case study using isocyclocitral


Presented at Eurotox 2023

Download a copy

 

Conclusion

  • The continous readout from the assay is reproducible and the assay predicts LLNA EC3 and human NESIL values with high correlation to reference benchmark data (geometric mean fold-misprediction factors of 3.8 and 2.5 respectively)
  • The assay provides a nice tool for the fragrance industry to predict the NESIL value which can be used for conducting the quantitative risk assessment for generating the IFRA standard.

Abstract

New Approach Methods (NAMs) for the assessment of skin sensitizers have been adopted as OECD Test Guidelines (TGs), supporting hazard- and GHS potency classifications. However, more granular potency information, preferably on a continuous scale, is needed to derive a point-of-departure (PoD) for Next Generation Risk Assessment (NGRA) of new chemical entities, which still represents a missing element in the application of NAMs for sensitization assessments.

The GARDskin assay (OECD TG 442E) provides a novel and mechanistically different method to monitor the Key Events (KE) in the Adverse Outcome Pathway (AOP) for skin sensitization and is the first harmonized test guideline based on genomics and machine leaning. A modified version of the validated protocol incorporating dose-response measurements has recently been described which uses linear models for the prediction of LLNA EC3/Human No Expected Sensitization Induction Levels (NESIL) values.

The aim of the following study, which represents a cross-sector collaboration involving industry, assay developer, and a non-profit research institute, were to perform a pre-validation exercise to evaluate the precision and reproducibility of the continous potency predictions from the GARDskin dose-response assay, and to demonstrate how the derived continous potency predictions can be implemented into available NGRA-framework to determine safe use levels in consumer products.

Predictive performance was estimated in a blinded study by evaluating a total of 17 fragrance materials, and reproducibility of the continous predictions was assessed by evaluating 11 of the materials in three replicate experiments. Results illustrate that predicted LLNA EC3/human NESIL values from the GARDskin Dose-response assay correlate well with reference data (geometric mean fold-error: 3.8 and 2.5, respectively), and that the continuous potency predictions are reproducible between experiments (geometric mean fold-change: 3.1). A case study using isocyclocitral was used to illustrate how the assay can be implemented into an NGRA-framework, which is an exposure driven risk assessment methodology. The predicted NESIL value from GARDskin Dose-response was used within a weight-of-evidence  approach to derive a PoD for use in QRA. Sensitization assessment factors were applied to the PoD to determine acceptable exposure levels at which no skin sensitization induction would be expected for different product types based on exposure.

In conclusion, the results reported from this study demonstrate that the predicted potency values from the GARDskin Dose-Response assay are reproducible between experiments and show good concordance with the published values. The case study illustrates a proof of concept and establish the assay as a relevant source of information to derive NESIL values for conducting QRA evaluations for fragrance materials without any new animal data.

 

 

 

 

Joint poster with RIFM and IFF: PoD determination of fragrance materials

GARDskin Dose-Response assay for PoD determination of fragrance materials and its application in conducting Quantitative Risk Assessment (QRA)


Presented at SOT 2023


Download a copy

 

 

Conclusion

  • The continous readout from the assay is reproductible and the assay predicts LLNA EC3 and human NESIL values with high correlation to reference benchmark data (geometric mean fold-misprediction factors of 3.8 and 2.5 respectively).
  • The assay provides a nice tool for the fragrance industry to predict the NESIL value to be used for conducting the quantitative risk assesment for generating the IFRA standard.

Abstract

The global fragrance industry applies Quantitative risk assessment (QRA) to develop risk management practices (IFRA Standards) for ingredients that are identified as potential dermal sensitizers. An important step in QRA is determination of a ”No Expected Sensitization Induction Level” (NESIL), which has historically been determined using human data with the support of animal data (e.g., murine local lymph node assay (LLNA). The EC3 value determined in the LLNA is used as the guidance for selection of the dose level in HRIPTs (Human Repteated Insult Patch Test) to confirm a NESIL value. The fragrance industry has adopted new approach methodologies (NAM) to address skin sensitization. Although several NAMs for identifying skin sensitizers have been accepted as Test Guidelines by OECD, these methods have thus far been validated only for hazard identification. Since a NESIL value is a key requirement to evaluate sensitizing potency for conducting QRA evaluations, development of a NAM-based strategy capable of providing potency data in the form of NESIL remains a high priority for the fragrance industry. The in vitro GARDskin assay was recently adopted by the OECD (TG 442E) for the hazard identification of skin sensitizers. Continuous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have further been developed to predict LLNA EC3 and human NESIL values. The aim of the study was to evaluate the precision and reproducibility of the continuous potency predictions from the GARDskin Dose-Response assay. A total of 17 test materials were evaluated, 11 of which were evaluated in three blinded studies separated in time. Preliminary results indicated that the GARDskin Dose-Response model predicted LLNA EC3 values and human NESIL values with geometric mean fold-misprediction factors of 3.8 and 2.5, respectively. For comparative reasons, the LLNA EC3 predicted the human NESIL values with a fold-misprediction factor of 3.7 in the same dataset. Results from the repeated assessment of the test materials were reproducible, with an estimated geometric mean range of fold-changes between replicates of 2.9. Using isocyclocitral (CAS 1335-66-6) as an example, a QRA was conducted to determine its safe use levels in different consumer product types. The results demonstrate that the LLNA EC3 values and the human NESIL values predicted from the GARDskin Dose-Response assay are reproducible between experiments and show good concordance with the published NESIL and EC3 values. Together with the reported performance data, this represents a major step towards the establishment of the assay as a relevant source of information to derive NESIL values for conducting QRA evaluations for fragrance materials to ensure product safety while avoiding the generation of new animal data.

 

 

 

 

Next Generation Risk Assessment (NGRA) using NAMs for skin sensitization: Reproducibility and precision of the GARDskin Dose-Response assay for PoD determination of fragrance chemicals.

Presented at ASCCT 2022

Next Generation Risk Assessment (NGRA) using NAMs for skin sensitization: Reproducibility and precision of the GARDskin Dose-Response assay for PoD determination of fragrance chemicals.

Andy Forreryd1, Shashi Donthamsetty2, Paul Sterchele2, Xiao Huang2, Gregory Ladics2, Mihwa Na3, Isabelle Lee3, Anne Marie Api3, Robin Gradin1, Henrik Johansson1
1SenzaGen, Lund, Sweden , 2International Flavors & Fragrances, Hazlet, NJ, USA, 3Research Institute for Fragrance Materials. Woodcliff lake, NJ, USA

Download a copy

 

Conclusion

  • GARD®skin Dose-Response can be used for continous predictions of skin sensitizing potency.
  • The continous readout from the assay is reproducible and the assay predicts LLNA EC3 and human NESIL values with high correlation to reference benchmark data.
  • The assay provides a nice tool for the fragrance industry to predict the NESIL value which can be used for conducting the quantitative risk assessment for generating the IFRA standard.

Abstract

New Approach Methods (NAMs) for assessment of skin sensitizers have been adopted as Test Guidelines (TGs) by OECD. When combined into Integrated Approaches to Testing and Assessment (IATA) or defined approaches (DA), they provide data supporting hazard classifications and GHS potency subcategorization. However, more granular potency information, preferably on a continuous scale, is needed to derive a point-of-departure (PoD) for Next Generation Risk Assessment (NGRA).

GARDskin was recently adopted into OECD TG 442E to support discrimination of skin sensitizers and non-sensitizers. Continous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have further been developed to predict LLNA EC3 and human NOEL values. The aim of the following study, which represents a cross-sector collaboration was to evaluate precision and reproducibility of the potency predictions from GARDskin Dose-Response in blinded studies.

Preliminary results from estimate of precision (n=36 materials) indicated that GARDskin Dose-Response predicted LLNA EC3/ human NOEL values with median fold-misprediction factors < 3.0 and < 2.0, respectively. Interestingly, LLNA predicted human NOEL with a fold-change > 2 in the same dataset. For reproducibility assessment, test materials (n=11) were evaluated in separate experiments (n=3), which generated highly reproducible results, with an average median range of fold-changes between replicates of 2.5.

Results from this study demonstrate that continous potency predictions from GARDskin Dose-Response are reproducible. Together with performance data, this represents a major step towards establishment of the assay as a relevant source of information to derive a PoD for NGRA, avoiding generation of new animal data.

 

 

 

The use of the GARD®skin Dose-Response assay to assess skin sensitizing potency in developing novel fragrance ingredients

Presented at ASCCT 2022

The use of the GARD®skin Dose-Response assay to assess skin sensitizing potency in developing novel fragrance ingredients

Tim Lindberg1, Christopher Choi2, Ulrika Mattson1 and Satoshi Sasaki3
1SenzaGen, Lund, Sweden , 2Takasago International Corp, Rockleigh NJ, USA ,3Takasago International Corp, Hiratsuka city, Kanagawa, Japan

Download a copy

 

Conclusion

The present study aimed at investigating the skin sensitizing potency of two novel fragrances, Fragrance 1 and 2, using three NAMs, the kDPRA, KeratinoSens and GARD®skin Dose-Response assays.

To move away from traditional safety testing, which includes animal studies, there is a paradigm shift towards the use of multiple NAMs in a weight-of-evidence approach when risk assessment of novel fragrance ingredients are conducted. However, the lack of established potency assays puts the alternative methods at a disadvantage as compared to the in vivo counterparts.

  • Fragrance 1 showed similar results across the three NAMs, with the GARD®skin Dose-Response assay predicting the cDV0–value to 18.4 µM, which in turn was used to predict a NESIL-value of 659 µg/cm2.
  • For Fragrance 2, equivocal results were seen, where the kDPRA assay predicting the ingredient not to be a category 1A skin sensitizer while KeratinoSens predicted it as a non-skin sensitizer. GARD®skin Dose-Response predicted the cDV0–value to 296 µM, which was used to predict a NESIL-value of 16600 µg/cm2. Combining the results from all three NAM assays, a confirmatory HRIPT testing concentration was determined for both ingredients, 562.5 µg/cm2 and 15000 µg/cm2 for Fragrance 1 and Fragrance 2, respectively.

In conclusion the data presented here show how the use of the GARD®skin Dose-Response assay in combination with other NAMs can be used as a replacement of animal studies for quantitative risk assessment of novel fragrance materials.

Abstract

Skin sensitization is one of the required endpoints for the development and registration of novel fragrance ingredients. Traditionally, testing has been performed using a combination of in vitro and in vivo assays, but recent developments has shifted the paradigm towards the use of New Approach Methodologies (NAMs), without the need for in vivo methods. However, none of the proposed NAMs are currently validated for continuous potency predictions, which is required for quantitative risk assessments of novel fragrance ingredients.

The GARD®skin assay (OECD TG 442E) is a genomics-based assay for hazard identification of sensitizers. To meet the need for quantitative potency information, GARD®skin Dose-Response has been developed based on the validated protocols of GARD®skin and generates a dose-response curve to identify the lowest concentration of a test compound required to elicit a positive classification (cDV0 value). These values correlate significantly to LLNA EC3 and human NESIL values.

The aim of this study was to investigate the sensitizing potency of two novel fragrance ingredients and to identify predicted non-sensitizing levels. Testing was performed in GARD®skin Dose-Response, with predicted EC3 and NESIL values of 1.93% and 27.8%, and 659µg/cm2 and 16600µg/cm2, for fragrance ingredients 1 and 2, respectively. These results in combination with data from kDPRA, KeratinoSens and in silico read- across, established the concentrations for confirmatory HRIPT testing (562.5µg/cm2 and 15000µg/cm2).

In conclusion, this study demonstrates how GARD®skin Dose-Response combined with other NAMs can be used for risk assessments and to establish a concentration for confirmatory HRIPT testing of novel fragrance ingredients.

 

 

Skin Sensitization Potency Assessments of Fragrance Materials using GARDskin Dose-Response

Joint poster with Research Institute for Fragrance Materials (RIFM),
Presented at the 2021 RIFM annual meeting & 2021 ACT annual meeting 

Mihwa Na, Ulrika Mattson, Robin Gradin, Henrik Johansson, Andy Forreryd, Anne Marie Api, Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA., SenzaGen AB, Lund, Sweden

Download a copy

 

Conclusion

  • GARDskin Dose-Response closely approximated the potency categories of 9/12 fragrance materials tested.
  • Based on results from this dataset, GARDskin Dose-Response appears useful for potency assessment for weak sensitizers and may constitute a promising strategy for deriving a point of departure for quantitative risk assessments.

Abstract

Several New Approach Methods for hazard identification of skin sensitizers have been developed and incorporated as OECD Test Guidelines. However, the methods for potency assessment are still lacking. GARDskin (OECD TGP 4.106) was initially developed to identify skin sensitizers by monitoring transcriptional patterns of a biomarker signature in a dendritic like cell line.

The predictive capacity of GARDskin has been demonstrated previously, with 95.8% accuracy, 91.7% positive predictive value, and 100.0% negative predictive value (1 false positive, n=24) (Johansson, Gradin et al. 2019). To derive potency information, a strategy based on dose-response measurements in GARDskin, referred to as the GARDskin Dose-Response assay, has recently been proposed. The readout of the assay corresponds to the lowest concentration required to exceed the binary classification threshold in GARDskin. This concentration correlates with local lymph node assay (LLNA) EC3 and human no observed effect level (NOEL) values and linear regression models have been established to exploit these relationships for potency predictions.

In this blinded study, 12 fragrance materials (10 very weak sensitizers and 2 weak sensitizers) were evaluated in GARDskin Dose-Response. Results were evaluated by comparing predicted values to the reference potency categories. Three of the very weak sensitizers were predicted as non-sensitizers by GARDskin Dose-Response. For the remaining nine materials which were predicted as sensitizers, the predicted EC3 and NOEL values closely approximated the reference data for most materials. Based on results from this dataset, GARDskin Dose-Response appears useful for potency assessment for weak sensitizers and may constitute a promising strategy for deriving a point of departure for quantitative risk assessments.

The GARD™potency assay for potency-associated subclassification of chemical skin sensitizers – Rationale, method development and ring trial results of predictive performance and reproducibility

Poster presented at the 2021 World Congress on Alternatives and Animal Use in the Life Sciences

Robin Gradin, Angelica Johansson, Andy Forreryd, Amber Edwards, Veronika Hoepflinge, Florence Burleson, Helge Gehrke, Erwin Roggen, Henrik Johansson| SenzaGen AB, 22381 Lund, Sweden; Burleson Research Technologies, Morrisville, NC 27560, USA; Eurofins BioPharma Product Testing Munich Gmbh, 82152 Planegg, Germany; 43RsMC Aps, 2800 Kongens Lyngby, Denmark

Download a copy

 

Conclusion

  • GARDpotency is an assay for sub-categorization of strong sensitizers (CLP sub-category 1A), allowing for discrimination from weak sensitizers (CLP sub-category 1B) and non-sensitizers. The method is based on the GARD platform, combining human immune cells, a genomic biomarker readout and machine learning-assisted classifications.
  • Sequential combination of GARDskin and GARDpotency forms the GARD Defined Approach, for complete hazard and risk assessment of skin sensitizers into three categories (CLP 1A, CLP 1B, non-sensitizers).
  • A blinded ring trial, comprising 28 chemicals, demonstrated that GARDpotency is functional and reproducible, with an accumulated predictive accuracy of 91% across three laboratories. In the same dataset, the GARD Defined Approach classifies chemicals into three categories with 86% accuracy.

Abstract

The advancement of non-animal approaches for hazard assessment of skin sensitizers have generated a variety of alternative assays with discriminatory properties comparable with those of accepted in vivo methods. However, hazard identification is rarely sufficient and information permitting the relative ranking of chemicals’ skin sensitization potency is desired. For example, the globally harmonized system of classification and labelling of chemicals (GHS/CLP) extends the binary hazard assessment with a qualitative subcategorization to distinguish between weak and strong skin sensitizers.

Though substantial efforts have been made towards developing alternative methods for potency assessment, none have gained regulatory acceptance, emphasizing that continued development of improved alternative assays remains a high priority.

The genomic allergen rapid detection (GARD) is an in vitro testing platform for assessment and characterization of chemical sensitizers, based on evaluation of transcriptional patterns of endpoint-specific genomic biomarker signatures in a human dendritic-like cell line following chemical exposure, in order to provide machine learning-assisted classifications of tested substances. The GARDskin assay was recently subjected to a formal validation procedure (OECD TGP 4.106) and reported a reproducibility between laboratories of 92%, as well as a predictive accuracy of 94%, for sensitization hazard assessment.

Here, we present the implementation of the related GARD application GARDpotency, for potency-associated subcategorization of chemical sensitizers. Following prediction model establishment, the functionality of the assay was validated in a blinded ring-trial, in accordance with OECD-guidance documents, by assessing predictive performance and reproducibility. It was found that the assay is functional and predictive, with an estimated cumulative accuracy of 88% across three laboratories and nine independent experiments. The within-laboratory reproducibility measures ranged between 63-89%, and the between-laboratory reproducibility was estimated to 61%. In conclusion, the in vitro GARDpotency assay constitute a standardized, functional assay, which could be a valuable tool for hazard characterization of skin sensitizer potency.

Quantitative Sensitizing Potency Assessment Using GARD™skin Dose-Response

Poster presented at the 2021 World Congress on Alternatives and Animal Use in the Life Sciences

Henrik Johansson, Robin Gradin, Andy Forreryd, Joshua Schmidt
SenzaGen AB, Lund, Sweden. SenzaGen Inc., Raleigh, NC.

Download a copy

 

Conclusion

  • As an adaptation from the GARDskin assay, GARDskin Dose-Response is suitable for quantitative skin sensitizing potency assessment of chemicals.
  • The experimental readout, referred to as cDV0, corresponds to the lowest dose required to elicit a positive response in GARDskin. As such, experimental protocols are analogous to the LLNA, in which the cDV0 corresponds to the EC3-value.
  • The cDV0 may be used to directly monitor sensitizing potency, or further used to extrapolate LLNA EC3-values, estimation of Human potency categories, or CLP 1A/1B classifications.

Abstract

Proactive identification and characterization of sensitization hazards are central aspects of risk assessment of chemicals. Current legislations and trends in predictive toxicology advocate a transition from in vivo methods to non-animal alternatives, with a number of methods for hazard assessment of skin sensitizers currently available. However, non-animal methods capable of providing quantitative assessment of sensitizing potency are currently lacking.

The GARDskin assay is a next-generation in vitro assay for hazard assessment of skin sensitizers, currently progressing towards regulatory acceptance. Recently, the GARDskin Dose-Response (DR) testing strategy was introduced, in which test chemicals are evaluated by the GARDskin assay in a titrated range of concentrations, in order to investigate the dose-response relationship between GARDskin classifications and test chemical concentration. As such, it provides a quantitative estimation of sensitizing potency, referred to as cDV0, which corresponds to the least required dose able to generate a positive response in the GARDskin assay. The cDV0 value obtained for a test chemical may be viewed as an analogue to the LLNA EC3 value, based on which further hazard characterization and risk assessment may be performed. Statistically significant correlation between the GARDskin DR cDV0 and the LLNA EC3, as well as with human No Expected Sensitization Induction level (NESIL) estimations has been confirmed, thus enabling direct extrapolation between the different metrics.

Here, we further illustrate how these results can be used on their own to facilitate direct potency-associated ranking of test chemicals. Furthermore, we demonstrate how obtained cDV0 values can be extrapolated to LLNA EC3 values with a 95% confidence interval, thereby also facilitating potency-associated subcategorization of test chemicals according to UN GHS classification criteria. Lastly, we illustrate how results generated with GARDskin DR can be directly incorporated into existing strategies for Quantitative Risk Assessment using an entirely in vitro setup.