Joint poster with Lundbeck: Case study on Occupational Health and Safety

Assessing Skin Sensitizing Hazard of Drug Products and Active Pharmaceutical Ingredients using GARD®: New Approach Methodology in Occupational Health and Safety

Presented at 2025 SOT

2025 SOT joint poster with Lundbeck on API and OHS

Download a copy in PDF

 

Conclusion

In conclusion, the findings highlight NAMs like GARD®skin Dose-Response as useful tools for enhancing OHS and safety protocols in pharmaceutical manufacturing.

Abstract

Background and Purpose:
Skin sensitizers are chemicals capable of inducing hypersensitivity reactions, such as Allergic Contact Dermatitis (ACD). Identifying and characterizing these chemicals’ skin sensitizing potential is essential for limiting hazardous exposure. Significant efforts have been made in the scientific community to develop New Approach Methodologies (NAMs) to replace animal testing for skin sensitization. Internationally recognized test guidelines as well as integrated strategies have been developed, combining in vitro, in chemico, and in silico approaches for predicting skin sensitization potential.

While widely accepted in cosmetics and personal care, NAMs’ application in the pharmaceutical sector for product development and Occupational Health and Safety (OHS) is less prominent. The aim of this study is to demonstrate how NAMs, including the in vitro GARD® assay, combined with in silico data, can be used by the pharmaceutical industry to assess the skin sensitization potential of drug products and Active Pharmaceutical Ingredients (APIs) to take protective measures and improve occupational safety in production environments.

In this study, the drug product is an oral medicine used to treat mental health problems, and the two APIs are compounds that affects how dopamine works in the brain, helping with symptoms like hallucinations or delusions, and helps boost certain chemicals in the brain to improve mood and reduce feelings of depression, respectively.

Methods:
Following reports of allergic reactions in production and quality control, a drug product and two APIs A and B were assessed. The drug product contained approximately 0.5% of API A and 9.4% of API B. In silico predictions using Nexus Derek software identified all compounds as potential sensitizers. The in vitro assay GARDskin Dose-Response (GARDskin DR) was conducted to confirm these predictions.

The GARDskin method (OECD 442E) is an in vitro assay for assessment of chemical skin sensitizers. The method provides binary hazard identification of skin sensitizers by evaluation of transcriptional patterns of an endpoint-specific genomic biomarker signature, comprising 196 genes, referred to as the GARDskin Genomic Prediction Signature (GPS), in the SenzaCell cell line. Final classifications are provided by a machine-learning prediction algorithm in the form of Decision Values (DV), the sign of which is evaluated by the prediction model. Any test chemical with a positive mean DV is classified as a skin sensitizer. Conversely, any test chemical with a negative mean DV is classified as non-skin sensitizer.

GARDskin DR is an adaptation of the conventional GARDskin method, in which test chemicals are evaluated by the GARDskin prediction algorithm in an extended range of concentrations, to investigate the dose-response relationship between GARDskin DVs and test chemical concentration. It provides a quantitative estimation of sensitizing potency, referred to as cDV0, which corresponds to the lowest required dose able to generate a positive mean DV. The readouts can predict correlating LLNA EC3 values, which are traditionally used to measure the skin sensitizing potency of chemicals. Furthermore, it can predict human skin sensitizing potency NOEL and GHS/CLP classification (1A or 1B), all with high statistical significance.

Results:

All test items were identified as sensitizers by GARDskin DR with the following results:
• Drug product: cDV0 = 12.8 µg/ml. Predictions: LLNA EC3 = 7.63%, NOEL = 3108 µg/cm², GHS/CLP 1B.
• API A: cDV0 = 1.51 µg/ml. Predictions: LLNA EC3 = 1.08%, NOEL = 254 µg/cm², GHS/CLP 1A.
• API B: cDV0 = 1.77 µg/ml. Predictions: LLNA EC3 = 1.19%, NOEL = 315 µg/cm², GHS/CLP 1A.

Conclusions:
Both APIs were classified as strong sensitizers, while the drug product was classified as a weak sensitizer, reflecting the dilution effect of excipients. The GARDskin DR assay demonstrated a clear dose-dependent increase in DVs for all three test items, confirming their classification as skin sensitizers, with varying potencies.
Based on the test outcomes, recommendations were made to improve occupational safety in handling these sensitizers:
• Avoiding dust inhalation and skin/eye contact.
• Minimizing prolonged and/or repeated exposure.
• Using appropriate personal protective equipment (PPE).
• Removing contaminated clothing and washing it before reuse.
• Ensuring thorough hand washing after handling, during breaks, and at the end of each shift.
• Handling substances in closed systems with proper ventilation.

These findings highlight NAMs like GARDskin DR as useful tools for enhancing OHS and safety protocols in pharmaceutical manufacturing.

Poster: Skin sensitization potency classification according to GHS/CLP

Subcategorization of skin sensitizers into UN GHS categories using GARDskin Dose-Response

Presented at 2025 SOT

Download a copy in PDF

 

Conclusion

GARD®skin Dose-Response provides accurate and robust UN GHS subclassifications, with performance and reproducibility levels comparable to, or surpassing, those of current in vitro counterparts.

Abstract

Background and Purpose:
Proactive identification and characterization of sensitization hazards and risks are central aspects of risk assessment of chemicals. Current legislations and trends in predictive toxicology advocate a transition from in vivo methods to new approach methodologies (NAM:s). For the purpose of hazard identification, numerous successful innovations have led to both the development and validation of several NAM:s for assessment of chemical skin sensitizers. Similarly, subcategorization of skin sensitizers according to requirements defined by United Nations Globally Harmonized System (UN GHS) has recently been demonstrated to be achievable by so-called Defined Approaches (DA:s), purely constituting NAM data sources. However, the ability of NAM:s to perform UN GHS-associated subcategorization may be considered subjects of optimization, both in terms of performance, applicability and the number of data sources required to obtain robust and accurate results.

The GARDskin Dose-Response (DR) method, adapted from the conventional OECD TG 442E method GARDskin, provides quantitative potency assessment of skin sensitizers. The method has been demonstrated to be useful for various potency-associated problem situations, including for definition of a point of departure (PoD) for downstream risk assessment, prediction of LLNA potency categories and weight of evidence (WoE)-based categorization of test chemicals. However, the ability of the method to contribute to UN GHS subcategorization, i.e., categorizing skin sensitizers into category 1A (strong) and category 1B (weak) sensitizers, has as of to date not been described. Here, a meta-analysis of all available and peer-reviewed GARDskin DR data is presented, aiming to describe the performance and reproducibility with which the GARDskin DR method can be used for UN GHS subcategorization.

Methods:
The GARDskin method (OECD TG 442E) is an in vitro assay for assessment of chemical skin sensitizers. The method provides binary hazard identification of skin sensitizers by evaluation of transcriptional patterns of an endpoint-specific genomic biomarker signature, comprising 196 genes, referred to as the GARDskin Genomic Prediction Signature (GPS), in the SenzaCell cell line. Final classifications are provided by a machine-learning prediction algorithm in the form of decision values (DV), the sign of which is evaluated by the prediction model; Any test chemical with a positive mean DV is classified as a skin sensitizer. Conversely, any test chemical with a negative mean DV is classified as non-skin sensitizer.

The GARDskin DR is an expanded adaptation of the conventional GARDskin method, in which test chemicals are evaluated by the GARDskin prediction algorithm in an extended range of concentrations, in order to investigate the dose-response relationship between GARDskin DVs and test chemical concentration. As such, it provides a quantitative estimation of sensitizing potency, referred to as cDV0, which corresponds to the lowest required dose able to generate a positive mean DV.

As cDV0 is typically reported as experimentally derived concentrations in the units of molar concentration or in the unit of μg/ml, improved interpretation may be facilitated by conversion to a predicted potency value (PPV) in the unit of µg/cm2, as recently described. As such, a PPV can readily be used to predict a human NESIL-value, derived from e.g. LLNA EC3 or human NOEL-values. Lastly, a PPV can be evaluated with respect to the UN GHS classification threshold of 500 µg/cm2 (corresponding to an LLNA EC3 of 2%). As such, a test chemical with a PPV smaller than 500 µg/cm2 is classified as a cat. 1A sensitizer. Conversely, a test chemical with a PPV greater than 500 µg/cm2 is classified as a non-cat. 1A sensitizer, which in the presence of positive GARDskin results is indicative of a cat. 1B sensitizer.

In the present study, a meta-analysis was conducted considering all available data from published GARDskin DR resources, which comprises > 150 unique test chemicals all of which have been assayed blindly in partner-controlled studies. The dataset was cross-referenced for UN GHS categories according to both human and LLNA data, as extracted from the Annex 2 of the Supporting document to the Guideline (GL) on Defined Approaches (DAs) for Skin Sensitization (GL 497). Taken together, the union of available data and GL 497 references included 87 test chemicals, with 69 and 38 test chemicals having available LLNA and human subcategory references, respectively. In addition, 42 chemicals had multiple results from repeated testing in 2-6 separate experiments, allowing also for an estimation of reproducibility.

Results:

The ability of the GARDskin DR method to perform UN GHS-associated subcategorization of skin sensitizers was estimated by evaluating published data with respect to the classification threshold of 500 µg/cm2 (corresponding to an LLNA EC3 of 2%). Considering all available published data with corresponding reference values (human and/or LLNA) available in the Annex 2 of the Supporting document to GL 497, results indicated that GARDskin DR was able to subcategorize test chemicals as cat. 1A or non-cat. 1A with a predictive accuracy of 88.6% and 91.3%, when considering human (N = 38) and LLNA (N = 69) references, respectively. Furthermore, from repeated testing of N = 42 chemicals, results indicate that the method was 92.9% reproducible, with concordant subcategorizations for 39 of the 42 chemicals. For this subset of data, test chemicals had been repeatedly tested in 2 (N = 22), 3 (N = 15), 4 (N = 4) or 6 (N = 1) independent experiments.

When put into context, these estimates indicate that GARDskin DR performs at levels comparable to, or surpassing, those of the DA:s of GL 497, when studying the same datasets, in terms of predictive accuracy and reproducibility.

 

Conclusions:
Taken together, this herein presented study indicates the usefulness of the GARDskin DR method to contribute to the prediction of skin sensitizing potency and associated UN GHS subcategorizations. Of particular note, the method is estimated to be comparable to existing DA:s, as described in GL 497, while being based on a single method. Should the regulatory context approve of classification and labelling based on individual data sources to the same extent as for DA:s, it is foreseen that such a testing strategy could potentially allow for resource-effective testing, with maintained high robustness and accuracy.

Joint publication with RIFM and IFF: Determining a Point of Departure for Skin Sensitization Potency and Quantitative Risk Assessment of Fragrance Ingredients Using the GARD®skin Dose-Response Assay

Advancing NAMs for Fragrance Safety: Collaborative Research with RIFM and IFF.

As innovators in in vitro skin sensitization testing, addressing key data gaps, we are pleased to share the publication of a new peer-reviewed article in ALTEX, which underscores the performance of GARD®skin Dose-Response in predicting the skin sensitization potency of fragrance ingredients. This study, conducted in collaboration with the expert teams at the Research Institute for Fragrance Materials, Inc. (RIFM) and IFF, contributes valuable insights to the growing body of research supporting more reliable, non-animal testing methods.

The article presents a comprehensive dataset of 100 fragrance ingredients, covering a broad chemical domain with diverse structural reactivity domains and potency levels. The results confirm GARD®skin Dose-Response‘s robust predictivity for skin sensitization potency across this wide chemical spectrum, strengthening its application for deriving No Expected Sensitization Induction Level (NESIL) values in Quantitative Risk Assessment (QRA) within frameworks like Next Generation Risk Assessment (NGRA). These advancements are pivotal in further reducing reliance on animal testing while enhancing risk assessment capabilities.

We would like to extend our gratitude to the exceptional teams who contributed to this collaboration: Isabelle Lee, Andy Forreryd, Mihwa Na, Isabella Schember, Maura Lavelle, Robin Gradin, Ulrika Mattson, Henrik Johansson, Shashi Donthamsetty, Gregory Ladics, and Anne Marie Api.

 

Isabelle Lee, Andy Forreryd, Mihwa Na, Isabella Schember, Maura Lavelle, Robin Gradin, Ulrika Mattson, Henrik Johansson, Shashi Donthamsetty, Gregory Ladics, and Anne Marie Api.
ALTEX - Alternatives to animal experimentation.(2025)
https://www.altex.org/index.php/altex/article/view/2810

Keywords

skin sensitization, fragrance materials, point of departure, OECD TG 442E, GARDskin, new approach methodology


Abstract

Potency and quantitative risk assessment are essential for determining safe concentrations for the formulation of potential skin sensitizers into consumer products. Several new approach methodologies (NAMs) for skin sensitization hazard assessment have been developed, validated, and adopted in OECD test guidelines. However, work is ongoing to develop NAMs for predicting skin sensitization potency on a quantitative scale for use as a point of departure (POD) in next-generation risk assessment (NGRA). GARDskin Dose-Response (DR) is an adaptation of the validated GARDskin assay (OECD TG 442E), and the readout of the assay is a quantitative potency prediction similar to the No Expected Sensitization Induction Level (NESIL) value (µg/cm2). The goal of this study was to evaluate the performance of the GARDskin DR assay for potency prediction of fragrance ingredients. One hundred (100) fragrance ingredients from a reference database covering varied structural reactivity domains and potency were tested in GARDskin DR. Materials tested had varied protein-binding reactivity alerts, including Schiff base, Michael addition, SN2, and acylation. Potency categories were predicted with a total accuracy of 37% and an approximate accuracy (exact match or off by 1 category) of 81%. Combining predicted weak and very weak categories increased total accuracy to 53% and approximate accuracy to 98%. The mean prediction error for the NESIL and local lymph node assay (LLNA) EC3 was 3.15- and 3.36-fold, respectively. Based on the results of this study, GARDskin DR is a promising predictor of skin sensitization potency with an applicability domain covering a wide range of fragrance ingredient reaction mechanisms, increasing the confidence in using the assay to conduct NGRA, ultimately reducing the need for animal testing.

Plain language summary

This study focused on testing a new in vitro method, GARDskin Dose-Response (DR), to predict the quantitative potency of fragrance ingredients in causing skin sensitization. This potency is important for setting safe levels of chemicals in consumer products. The GARDskin DR assay, based on an existing skin sensitization test (OECD TG 442E), provides a quantitative measure of potency similar to the No Expected Sensitization Induction Level (NESIL). One hundred (100) fragrance ingredients with different chemical structures and reactivity patterns were tested. The assay accurately distinguished between sensitizers and non-sensitizers for 81% of the materials, and also correctly predicted their approximate potency categories. The results show that GARDskin DR is a promising tool for predicting quantitative potency for skin sensitization risk, helping to reduce animal testing and support safer product development.

 

Joint poster with L’Oreal: Point of Departure for risk assessment

Improved Confidence of Quantitative Sensitizing Potency Assessment for Point of Departure Using GARD®skin Dose-Response


Presented at SOT and Eurotox 2024

Download a copy in PDF

 

Conclusion

In conclusion, the readouts from GARDskin Dose-Response derive a quantitative continuous potency estimate of skin sensitizers that may be used directly as a PoD for a seamless integration into downstream NGRA.

Abstract

Identification of skin sensitization hazard and potency characterization are central aspects of risk assessment of chemicals. Current legislation advocates a transition from hazard assessment using in vivo methods to UN GHS potency subclassification and quantitative risk assessment by use of New Approach Methodologies (NAM:s) as well as Defined Approaches (DA). However, the ability of NAM assays to quantitatively estimate sensitizing potency and thereby establish a point of departure (POD) for next-generation risk assessment (NGRA) strategies is currently lacking.

To this end, the GARDskin Dose-Response (DR) method, adapted from the OECD TG 442E method GARDskin, was recently introduced. The GARDskin DR method evaluates test chemicals in a titrated range of concentrations, in order to investigate the dose-response relationship between the output from the GARDskin prediction algorithm (Decision Values; DV:s) and test chemical concentration. The combined information can be used to derive a quantitative estimation of sensitizing potency, defined as the cDV0-value, i.e, the least required dose required to elicit a positive response by the prediction model.

The current work focuses on optimizing the ability of GARDskin DR to derive a quantitative POD based on conversion to a composite Potency Value (PV; µg/cm2), taking into account both human and in vivo reference data sources. A total of 25 chemicals were used to construct predictive regression models fitted to reference PV:s. Results show that the updated models fitted to reference PV:s produced more accurate potency predictions compared with models fitted with, and aiming to predict, only LLNA EC3 and NOEL, respectively. Mean fold-change errors ranged between 2.8 and 3.2, with predicted POD:s being within or close to the range of the variation of the historical in vivo data. In addition, uncertainty in predictions was reduced, as estimated by a minimum 2-fold reduction of 95%-confidence intervals, when comparing models fitted to reference PV:s with models fitter with only LLNA EC3 and human NOEL, respectively.

In conclusion, these improvements constitute a major step forward for the ability of NAM:s to assess quantitative sensitizing potency. It demonstrates how GARDskin Dose-Response can accurately estimate a POD and be incorporated into downstream strategies for quantitative risk assessment (QRA), to ultimately contribute to the assessment of safe use levels of chemicals.

Keywords: NAM, GARDskin Dose-Response, Sensitizing potency, Quantitative risk assessment, Point of departure

Joint publication with L’Oréal: In vitro prediction of skin sensitizing potency using the GARDskin Dose-Response assay: A simple regression approach

New joint publication with L’Oréal.

We are excited to announce the recent publication of a collaborative scientific paper by the expert teams at L’Oréal and SenzaGen, in Toxics MDPI. This peer-reviewed article presents new evidence on the performance of the GARD®skin Dose-Response for quantitative potency assessment of skin sensitizers.

With an extended set of 30 chemicals and a composite potency model for the prediction of sensitizing potency, the study demonstrates the ability of GARD®skin Dose-Response to predict a Point-of-Departure (PoD) for potential skin sensitizers, showing concordance with NESIL values derived from LLNA and Human data.

This research represents a significant advancement in deriving PoD values for chemicals which can be used directly in improving downstream risk assessment strategies.

Gradin R, Tourneix F, Mattson U, Andersson J, Amaral F, Forreryd A, Alépée N, Johansson H. 
Toxics. 2024; 12(9):626. 
https://doi.org/10.3390/toxics12090626

Keywords

NAM; GARDskin Dose-Response; Sensitizing potency; Quantitative risk assessment; Point of departure


Abstract

Toxicological assessments of skin sensitizers have progressed towards a higher reliance on non-animal methods. Current technological trends aim to extend the utility of non-animal methods to accurately characterize skin sensitizer potency.

The GARDskin Dose-Response assay was previously described where it was shown that its main readout, the cDV0 concentration, was associated with skin sensitizing potency. The ability to predict potency in the form of NESILs derived from LLNA or human NOEL, from cDV0, was evaluated. The assessment of a dataset of 30 chemicals showed that the cDV0 values still correlated strongly and significantly with both LLNA EC3 and human NOEL values (ρ = 0.645-0.787 [p < 1×10-3]).

A composite potency value that combined LLNA and human potency data was defined, which aided the performance of the proposed model for the prediction of NESIL. The potency model accurately predicted sensitizing potency, with cross-validation errors of 2.75 and 3.22 fold changes compared with NESILs from LLNA and human, respectively.

In conclusion, the results suggest that the GARDskin Dose-Response assay may be used to derive an accurate quantitative continuous potency estimate of skin sensitizers.

 

Joint poster with RIFM and IFF: In vitro Skin Sensitization Potency Prediction Performance on the RCPL list

GARD®skin Dose-Response for skin sensitizing potency assessment: Performance on the Reference Chemical Potency List (RCPL)


Presented at BTS 2024.

Download a copy in PDF

 

Conclusion

  • This study suggests that GARDskin Dose-Response is a potent predictor of skin sensitizing potency on a continuous scale.
  • Predicted potency values are in µg/cm2 and can be used for risk assessment and to establish a maximum allowable concentration of a sensitizer in various consumer products.

Abstract

New Approach methods (NAMs) for assessment of skin sensitizing hazard and GHS potency have been adopted as OECD Test Guidelines. However, NAMs able to estimate skin sensitization potency on a continous scale, and thereby generating data for use as a point of departure (PoD) in next-generation risk assessment (NGRA) strategies, are currently lacking.

GARDskin Dose-Response (DR) is based on the validated protocols of GARDskin (OECD TG 442E). The readout of the assay is a continous potency prediction, or a No Expected Sensitization Induction Level (NESIL) value (ug/cm2).

The aim of this study was to evaluate the performance of the potency predictions from GARDskin DR using the chemicals in the Reference Chemical Potency List (RCPL) as a reference. The RCPL contains curated Potency Values (PVs) and was developed to serve as a resource for evaluating potency predictions from NAM-based approaches.

GARDskin data was generated (n=27 chemicals) and potency predictions were compared to PV values from the RCPL list. The continous potency predictions from GARDskin DR correlated well with PVs (p: 0.74), with an average misprediction of 3.7-fold from reference values. Furthermore, GARDskin DR provided a very similar potency ranking compared to the ranking based on PV values in the RCPL list (ρ: 0.69).

In conclusion, based on the results in this study, GARDskin DR was demonstrated to be a potent predictor of skin sensitizing potency, increasing the confidence in using the assay to conduct NGRA on new chemical entities, ultimately reducing the need for confirmatory human and/or animal studies.

Keywords: NAM, GARDskin Dose-Response, Sensitizing potency, Quantitative risk assessment, Point of departure

Joint publication with IFF and RIFM: GARDskin dose-response assay and its application in conducting Quantitative Risk Assessment (QRA) for fragrance materials using a Next Generation Risk Assessment (NGRA) framework

New joint publication with International Flavors & Fragrances Inc (IFF) and Research Institute for Fragrance Materials (RIFM).

SenzaGen scientists, alongside the scientific teams at International Flavors & Fragrances Inc and Research Institute for Fragrance Materials, have jointly published an article in Regulatory Toxicology and Pharmacology, presenting new peer-reviewed evidence on the performance of the GARD®skin Dose-Response assay for Quantitative Risk Assessment of fragrance materials.

The study results confirm the ability of GARD®skin Dose-Response to predict human NESIL values with good predictive performance, showing good concordance with published reference Human data and demonstrating good reproducibility.

Furthermore, the paper also presents a case study to illustrate how the predicted NESIL value from GARDskin Dose-Response can be used in practice within a NGRA framework to establish a maximum allowable concentration of a sensitizer in different consumer products.

The study represents a major step towards the establishment of the assay to derive NESIL values for conducting QRA evaluations for fragrance materials using an NGRA framework.

Shashikiran Donthamsetty, Andy Forreryd, Paul Sterchele, Xiao Huang, Robin Gradin, Henrik Johansson, Ulrika Mattson, Isabelle Lee, Anne Marie Api, Gregory Ladics,
Regulatory Toxicology and Pharmacology, Volume 149, 2024, 105597, ISSN 0273-2300,
https://doi.org/10.1016/j.yrtph.2024.105597

Keywords

QRA (Quantitative Risk Assesment); Dermal sensitization; Fragrance materials; Next Generation Risk Assesment (NGRA); GARD assay; No Expected Sensitization Induction Level (NESIL); New Approach Methodologies (NAMs); OECD 442E

Highlights

  • Developed a Next Generation Risk Assessment (NGRA) framework for conducting QRA2 for fragrance materials.
  • The GARDskin Dose Response (DR) assay is a reliable and reproducible method for predicting NESIL for fragrance materials.
  • NGRA for QRA2 was validated using isocyclocitral as a case study.


Abstract

Development of New Approach Methodologies (NAMs) capable of providing a No Expected Sensitization Induction Level (NESIL) value remains a high priority for the fragrance industry for conducting a Quantitative Risk Assesment (QRA) to evaluate dermal sensitization. The in vitro GARDskin assay was recently adopted by the OECD (TG 442E) for the hazard identification of skin sensitizers. Continuous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have been developed to predict human NESIL values. The aim of the study was to evaluate the precision and reproducibility of the continuous potency predictions from the GARDskin Dose-Response (DR) assay and its application in conducting QRA for fragrance materials using a Next Generation Risk Assessment (NGRA) framework. Results indicated that the GARDskin Dose-Response model predicted human NESIL values with a good degree of concordance with published NESIL values, which were also reproducible in 3 separate experiments. Using Isocyclocitral as an example, a QRA was conducted to determine its safe use levels in different consumer product types using a NGRA framework. This study represents a major step towards the establishment of the assay to derive NESIL values for conducting QRA evaluations for fragrance materials using a NGRA framework.

Joint poster with Takasago: Determining safe use level for novel fragrance ingredients

Practical application of the GARD®skin Dose-Response assay to derive a No Expected Sensitization Induction Level (NESIL) value for confirmatory human patch studies to determine safe use level for novel fragrance ingredients


Presented at ACT 2023

Download a copy

 

Summary

  • Combining the results from the GARD®skin Dose-Response assay with other NAMs enables weight-of-evidence based approaches to determine safe use levels of novel fragrance ingredients.
  • Based on the results from the weight-of-evidence approach, confirmatory human patch test and HRIPT are conducted. HRIPT is performed at the top concentration of 11250ug/cm2. Both results are negative, confirming the predicted NESIL-value from GARD®.

 

Abstract

Skin sensitization is one of the required endpoints for the development and registration of novel fragrance ingredients. Traditionally, assessment has been performed combining in vitro and in vivo assays, but recent developments has shifted to the use of New Approach Methodologies (NAMs), without need for in vivo methods. However, none of the proposed NAMs are currently validated for continuous potency predictions, which is required for quantitative risk assessments of novel fragrance ingredients.

The GARD®skin assay (OECD TG 442E) is a genomics-based assay for hazard identification of sensitizers. To meet the need for quantitative potency information, GARD®skin Dose-Response has been developed based on the validated protocols of GARD®skin and generates a dose-response curve to identify the lowest concentration of a test compound required to elicit a positive classification (cDV0-value). These values correlate significantly to LLNA EC3 and human NESIL values.

This study presents the use of the GARDskin Dose-Response assay to determine safe human user levels for one novel fragrance ingredient. The experimentally predicted NESIL value was determined to 37800µg/cm2. Using a weight-of- evidence approach mainly guided by the quantitative data from the GARDskin Dose-Response, confirmatory Human Repeated Insult Patch Testing (HRIPT) studies were conducted and at the tested concentrations, no sensitization reactions were observed. In conclusion, this study expands the toxicologist´s toolbox and illustrates the potential to use the GARDskin Dose-Response assay to derive NESIL values that are protective of human health, without having to rely on the Dermal Sensitization Threshold (DST) approach or reverting to traditional animal testing approaches.

Joint poster with RIFM and IFF: PoD for NGRA, a case study using isocyclocitral

The GARDskin Dose-Response assay for determination of a point-of-departure (PoD) for Next Generation Risk Assessment (NGRA) of skin sensitizers: A case study using isocyclocitral


Presented at Eurotox 2023

Download a copy

 

Conclusion

  • The continous readout from the assay is reproducible and the assay predicts LLNA EC3 and human NESIL values with high correlation to reference benchmark data (geometric mean fold-misprediction factors of 3.8 and 2.5 respectively)
  • The assay provides a nice tool for the fragrance industry to predict the NESIL value which can be used for conducting the quantitative risk assessment for generating the IFRA standard.

Abstract

New Approach Methods (NAMs) for the assessment of skin sensitizers have been adopted as OECD Test Guidelines (TGs), supporting hazard- and GHS potency classifications. However, more granular potency information, preferably on a continuous scale, is needed to derive a point-of-departure (PoD) for Next Generation Risk Assessment (NGRA) of new chemical entities, which still represents a missing element in the application of NAMs for sensitization assessments.

The GARDskin assay (OECD TG 442E) provides a novel and mechanistically different method to monitor the Key Events (KE) in the Adverse Outcome Pathway (AOP) for skin sensitization and is the first harmonized test guideline based on genomics and machine leaning. A modified version of the validated protocol incorporating dose-response measurements has recently been described which uses linear models for the prediction of LLNA EC3/Human No Expected Sensitization Induction Levels (NESIL) values.

The aim of the following study, which represents a cross-sector collaboration involving industry, assay developer, and a non-profit research institute, were to perform a pre-validation exercise to evaluate the precision and reproducibility of the continous potency predictions from the GARDskin dose-response assay, and to demonstrate how the derived continous potency predictions can be implemented into available NGRA-framework to determine safe use levels in consumer products.

Predictive performance was estimated in a blinded study by evaluating a total of 17 fragrance materials, and reproducibility of the continous predictions was assessed by evaluating 11 of the materials in three replicate experiments. Results illustrate that predicted LLNA EC3/human NESIL values from the GARDskin Dose-response assay correlate well with reference data (geometric mean fold-error: 3.8 and 2.5, respectively), and that the continuous potency predictions are reproducible between experiments (geometric mean fold-change: 3.1). A case study using isocyclocitral was used to illustrate how the assay can be implemented into an NGRA-framework, which is an exposure driven risk assessment methodology. The predicted NESIL value from GARDskin Dose-response was used within a weight-of-evidence  approach to derive a PoD for use in QRA. Sensitization assessment factors were applied to the PoD to determine acceptable exposure levels at which no skin sensitization induction would be expected for different product types based on exposure.

In conclusion, the results reported from this study demonstrate that the predicted potency values from the GARDskin Dose-Response assay are reproducible between experiments and show good concordance with the published values. The case study illustrates a proof of concept and establish the assay as a relevant source of information to derive NESIL values for conducting QRA evaluations for fragrance materials without any new animal data.

 

 

 

 

Joint poster with RIFM and IFF: PoD determination of fragrance materials

GARDskin Dose-Response assay for PoD determination of fragrance materials and its application in conducting Quantitative Risk Assessment (QRA)


Presented at SOT 2023


Download a copy

 

 

Conclusion

  • The continous readout from the assay is reproductible and the assay predicts LLNA EC3 and human NESIL values with high correlation to reference benchmark data (geometric mean fold-misprediction factors of 3.8 and 2.5 respectively).
  • The assay provides a nice tool for the fragrance industry to predict the NESIL value to be used for conducting the quantitative risk assesment for generating the IFRA standard.

Abstract

The global fragrance industry applies Quantitative risk assessment (QRA) to develop risk management practices (IFRA Standards) for ingredients that are identified as potential dermal sensitizers. An important step in QRA is determination of a ”No Expected Sensitization Induction Level” (NESIL), which has historically been determined using human data with the support of animal data (e.g., murine local lymph node assay (LLNA). The EC3 value determined in the LLNA is used as the guidance for selection of the dose level in HRIPTs (Human Repteated Insult Patch Test) to confirm a NESIL value. The fragrance industry has adopted new approach methodologies (NAM) to address skin sensitization. Although several NAMs for identifying skin sensitizers have been accepted as Test Guidelines by OECD, these methods have thus far been validated only for hazard identification. Since a NESIL value is a key requirement to evaluate sensitizing potency for conducting QRA evaluations, development of a NAM-based strategy capable of providing potency data in the form of NESIL remains a high priority for the fragrance industry. The in vitro GARDskin assay was recently adopted by the OECD (TG 442E) for the hazard identification of skin sensitizers. Continuous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have further been developed to predict LLNA EC3 and human NESIL values. The aim of the study was to evaluate the precision and reproducibility of the continuous potency predictions from the GARDskin Dose-Response assay. A total of 17 test materials were evaluated, 11 of which were evaluated in three blinded studies separated in time. Preliminary results indicated that the GARDskin Dose-Response model predicted LLNA EC3 values and human NESIL values with geometric mean fold-misprediction factors of 3.8 and 2.5, respectively. For comparative reasons, the LLNA EC3 predicted the human NESIL values with a fold-misprediction factor of 3.7 in the same dataset. Results from the repeated assessment of the test materials were reproducible, with an estimated geometric mean range of fold-changes between replicates of 2.9. Using isocyclocitral (CAS 1335-66-6) as an example, a QRA was conducted to determine its safe use levels in different consumer product types. The results demonstrate that the LLNA EC3 values and the human NESIL values predicted from the GARDskin Dose-Response assay are reproducible between experiments and show good concordance with the published NESIL and EC3 values. Together with the reported performance data, this represents a major step towards the establishment of the assay as a relevant source of information to derive NESIL values for conducting QRA evaluations for fragrance materials to ensure product safety while avoiding the generation of new animal data.