Joint poster with L’Oreal: Point of Departure for risk assessment

Improved Confidence of Quantitative Sensitizing Potency Assessment for Point of Departure Using GARD®skin Dose-Response


Presented at SOT and Eurotox 2024

Download a copy in PDF

 

Conclusion

In conclusion, the readouts from GARDskin Dose-Response derive a quantitative continuous potency estimate of skin sensitizers that may be used directly as a PoD for a seamless integration into downstream NGRA.

Abstract

Identification of skin sensitization hazard and potency characterization are central aspects of risk assessment of chemicals. Current legislation advocates a transition from hazard assessment using in vivo methods to UN GHS potency subclassification and quantitative risk assessment by use of New Approach Methodologies (NAM:s) as well as Defined Approaches (DA). However, the ability of NAM assays to quantitatively estimate sensitizing potency and thereby establish a point of departure (POD) for next-generation risk assessment (NGRA) strategies is currently lacking.

To this end, the GARDskin Dose-Response (DR) method, adapted from the OECD TG 442E method GARDskin, was recently introduced. The GARDskin DR method evaluates test chemicals in a titrated range of concentrations, in order to investigate the dose-response relationship between the output from the GARDskin prediction algorithm (Decision Values; DV:s) and test chemical concentration. The combined information can be used to derive a quantitative estimation of sensitizing potency, defined as the cDV0-value, i.e, the least required dose required to elicit a positive response by the prediction model.

The current work focuses on optimizing the ability of GARDskin DR to derive a quantitative POD based on conversion to a composite Potency Value (PV; µg/cm2), taking into account both human and in vivo reference data sources. A total of 25 chemicals were used to construct predictive regression models fitted to reference PV:s. Results show that the updated models fitted to reference PV:s produced more accurate potency predictions compared with models fitted with, and aiming to predict, only LLNA EC3 and NOEL, respectively. Mean fold-change errors ranged between 2.8 and 3.2, with predicted POD:s being within or close to the range of the variation of the historical in vivo data. In addition, uncertainty in predictions was reduced, as estimated by a minimum 2-fold reduction of 95%-confidence intervals, when comparing models fitted to reference PV:s with models fitter with only LLNA EC3 and human NOEL, respectively.

In conclusion, these improvements constitute a major step forward for the ability of NAM:s to assess quantitative sensitizing potency. It demonstrates how GARDskin Dose-Response can accurately estimate a POD and be incorporated into downstream strategies for quantitative risk assessment (QRA), to ultimately contribute to the assessment of safe use levels of chemicals.

Keywords: NAM, GARDskin Dose-Response, Sensitizing potency, Quantitative risk assessment, Point of departure

Joint publication with L’Oréal: In vitro prediction of skin sensitizing potency using the GARDskin Dose-Response assay: A simple regression approach

New joint publication with L’Oréal.

We are excited to announce the recent publication of a collaborative scientific paper by the expert teams at L’Oréal and SenzaGen, in Toxics MDPI. This peer-reviewed article presents new evidence on the performance of the GARD®skin Dose-Response for quantitative potency assessment of skin sensitizers.

With an extended set of 30 chemicals and a composite potency model for the prediction of sensitizing potency, the study demonstrates the ability of GARD®skin Dose-Response to predict a Point-of-Departure (PoD) for potential skin sensitizers, showing concordance with NESIL values derived from LLNA and Human data.

This research represents a significant advancement in deriving PoD values for chemicals which can be used directly in improving downstream risk assessment strategies.

Gradin R, Tourneix F, Mattson U, Andersson J, Amaral F, Forreryd A, Alépée N, Johansson H. 
Toxics. 2024; 12(9):626. 
https://doi.org/10.3390/toxics12090626

Keywords

NAM; GARDskin Dose-Response; Sensitizing potency; Quantitative risk assessment; Point of departure


Abstract

Toxicological assessments of skin sensitizers have progressed towards a higher reliance on non-animal methods. Current technological trends aim to extend the utility of non-animal methods to accurately characterize skin sensitizer potency.

The GARDskin Dose-Response assay was previously described where it was shown that its main readout, the cDV0 concentration, was associated with skin sensitizing potency. The ability to predict potency in the form of NESILs derived from LLNA or human NOEL, from cDV0, was evaluated. The assessment of a dataset of 30 chemicals showed that the cDV0 values still correlated strongly and significantly with both LLNA EC3 and human NOEL values (ρ = 0.645-0.787 [p < 1×10-3]).

A composite potency value that combined LLNA and human potency data was defined, which aided the performance of the proposed model for the prediction of NESIL. The potency model accurately predicted sensitizing potency, with cross-validation errors of 2.75 and 3.22 fold changes compared with NESILs from LLNA and human, respectively.

In conclusion, the results suggest that the GARDskin Dose-Response assay may be used to derive an accurate quantitative continuous potency estimate of skin sensitizers.

 

Joint poster with RIFM and IFF: In vitro Skin Sensitization Potency Prediction Performance on the RCPL list

GARD®skin Dose-Response for skin sensitizing potency assessment: Performance on the Reference Chemical Potency List (RCPL)


Presented at BTS 2024.

Download a copy in PDF

 

Conclusion

  • This study suggests that GARDskin Dose-Response is a potent predictor of skin sensitizing potency on a continuous scale.
  • Predicted potency values are in µg/cm2 and can be used for risk assessment and to establish a maximum allowable concentration of a sensitizer in various consumer products.

Abstract

New Approach methods (NAMs) for assessment of skin sensitizing hazard and GHS potency have been adopted as OECD Test Guidelines. However, NAMs able to estimate skin sensitization potency on a continous scale, and thereby generating data for use as a point of departure (PoD) in next-generation risk assessment (NGRA) strategies, are currently lacking.

GARDskin Dose-Response (DR) is based on the validated protocols of GARDskin (OECD TG 442E). The readout of the assay is a continous potency prediction, or a No Expected Sensitization Induction Level (NESIL) value (ug/cm2).

The aim of this study was to evaluate the performance of the potency predictions from GARDskin DR using the chemicals in the Reference Chemical Potency List (RCPL) as a reference. The RCPL contains curated Potency Values (PVs) and was developed to serve as a resource for evaluating potency predictions from NAM-based approaches.

GARDskin data was generated (n=27 chemicals) and potency predictions were compared to PV values from the RCPL list. The continous potency predictions from GARDskin DR correlated well with PVs (p: 0.74), with an average misprediction of 3.7-fold from reference values. Furthermore, GARDskin DR provided a very similar potency ranking compared to the ranking based on PV values in the RCPL list (ρ: 0.69).

In conclusion, based on the results in this study, GARDskin DR was demonstrated to be a potent predictor of skin sensitizing potency, increasing the confidence in using the assay to conduct NGRA on new chemical entities, ultimately reducing the need for confirmatory human and/or animal studies.

Keywords: NAM, GARDskin Dose-Response, Sensitizing potency, Quantitative risk assessment, Point of departure

Joint publication with IFF and RIFM: GARDskin dose-response assay and its application in conducting Quantitative Risk Assessment (QRA) for fragrance materials using a Next Generation Risk Assessment (NGRA) framework

New joint publication with International Flavors & Fragrances Inc (IFF) and Research Institute for Fragrance Materials (RIFM).

SenzaGen scientists, alongside the scientific teams at International Flavors & Fragrances Inc and Research Institute for Fragrance Materials, have jointly published an article in Regulatory Toxicology and Pharmacology, presenting new peer-reviewed evidence on the performance of the GARD®skin Dose-Response assay for Quantitative Risk Assessment of fragrance materials.

The study results confirm the ability of GARD®skin Dose-Response to predict human NESIL values with good predictive performance, showing good concordance with published reference Human data and demonstrating good reproducibility.

Furthermore, the paper also presents a case study to illustrate how the predicted NESIL value from GARDskin Dose-Response can be used in practice within a NGRA framework to establish a maximum allowable concentration of a sensitizer in different consumer products.

The study represents a major step towards the establishment of the assay to derive NESIL values for conducting QRA evaluations for fragrance materials using an NGRA framework.

Shashikiran Donthamsetty, Andy Forreryd, Paul Sterchele, Xiao Huang, Robin Gradin, Henrik Johansson, Ulrika Mattson, Isabelle Lee, Anne Marie Api, Gregory Ladics,
Regulatory Toxicology and Pharmacology, Volume 149, 2024, 105597, ISSN 0273-2300,
https://doi.org/10.1016/j.yrtph.2024.105597

Keywords

QRA (Quantitative Risk Assesment); Dermal sensitization; Fragrance materials; Next Generation Risk Assesment (NGRA); GARD assay; No Expected Sensitization Induction Level (NESIL); New Approach Methodologies (NAMs); OECD 442E

Highlights

  • Developed a Next Generation Risk Assessment (NGRA) framework for conducting QRA2 for fragrance materials.
  • The GARDskin Dose Response (DR) assay is a reliable and reproducible method for predicting NESIL for fragrance materials.
  • NGRA for QRA2 was validated using isocyclocitral as a case study.


Abstract

Development of New Approach Methodologies (NAMs) capable of providing a No Expected Sensitization Induction Level (NESIL) value remains a high priority for the fragrance industry for conducting a Quantitative Risk Assesment (QRA) to evaluate dermal sensitization. The in vitro GARDskin assay was recently adopted by the OECD (TG 442E) for the hazard identification of skin sensitizers. Continuous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have been developed to predict human NESIL values. The aim of the study was to evaluate the precision and reproducibility of the continuous potency predictions from the GARDskin Dose-Response (DR) assay and its application in conducting QRA for fragrance materials using a Next Generation Risk Assessment (NGRA) framework. Results indicated that the GARDskin Dose-Response model predicted human NESIL values with a good degree of concordance with published NESIL values, which were also reproducible in 3 separate experiments. Using Isocyclocitral as an example, a QRA was conducted to determine its safe use levels in different consumer product types using a NGRA framework. This study represents a major step towards the establishment of the assay to derive NESIL values for conducting QRA evaluations for fragrance materials using a NGRA framework.

Joint poster with Takasago: Determining safe use level for novel fragrance ingredients

Practical application of the GARD®skin Dose-Response assay to derive a No Expected Sensitization Induction Level (NESIL) value for confirmatory human patch studies to determine safe use level for novel fragrance ingredients


Presented at ACT 2023

Download a copy

 

Summary

  • Combining the results from the GARD®skin Dose-Response assay with other NAMs enables weight-of-evidence based approaches to determine safe use levels of novel fragrance ingredients.
  • Based on the results from the weight-of-evidence approach, confirmatory human patch test and HRIPT are conducted. HRIPT is performed at the top concentration of 11250ug/cm2. Both results are negative, confirming the predicted NESIL-value from GARD®.

 

Abstract

Skin sensitization is one of the required endpoints for the development and registration of novel fragrance ingredients. Traditionally, assessment has been performed combining in vitro and in vivo assays, but recent developments has shifted to the use of New Approach Methodologies (NAMs), without need for in vivo methods. However, none of the proposed NAMs are currently validated for continuous potency predictions, which is required for quantitative risk assessments of novel fragrance ingredients.

The GARD®skin assay (OECD TG 442E) is a genomics-based assay for hazard identification of sensitizers. To meet the need for quantitative potency information, GARD®skin Dose-Response has been developed based on the validated protocols of GARD®skin and generates a dose-response curve to identify the lowest concentration of a test compound required to elicit a positive classification (cDV0-value). These values correlate significantly to LLNA EC3 and human NESIL values.

This study presents the use of the GARDskin Dose-Response assay to determine safe human user levels for one novel fragrance ingredient. The experimentally predicted NESIL value was determined to 37800µg/cm2. Using a weight-of- evidence approach mainly guided by the quantitative data from the GARDskin Dose-Response, confirmatory Human Repeated Insult Patch Testing (HRIPT) studies were conducted and at the tested concentrations, no sensitization reactions were observed. In conclusion, this study expands the toxicologist´s toolbox and illustrates the potential to use the GARDskin Dose-Response assay to derive NESIL values that are protective of human health, without having to rely on the Dermal Sensitization Threshold (DST) approach or reverting to traditional animal testing approaches.

Joint poster with RIFM and IFF: PoD for NGRA, a case study using isocyclocitral

The GARDskin Dose-Response assay for determination of a point-of-departure (PoD) for Next Generation Risk Assessment (NGRA) of skin sensitizers: A case study using isocyclocitral


Presented at Eurotox 2023

Download a copy

 

Conclusion

  • The continous readout from the assay is reproducible and the assay predicts LLNA EC3 and human NESIL values with high correlation to reference benchmark data (geometric mean fold-misprediction factors of 3.8 and 2.5 respectively)
  • The assay provides a nice tool for the fragrance industry to predict the NESIL value which can be used for conducting the quantitative risk assessment for generating the IFRA standard.

Abstract

New Approach Methods (NAMs) for the assessment of skin sensitizers have been adopted as OECD Test Guidelines (TGs), supporting hazard- and GHS potency classifications. However, more granular potency information, preferably on a continuous scale, is needed to derive a point-of-departure (PoD) for Next Generation Risk Assessment (NGRA) of new chemical entities, which still represents a missing element in the application of NAMs for sensitization assessments.

The GARDskin assay (OECD TG 442E) provides a novel and mechanistically different method to monitor the Key Events (KE) in the Adverse Outcome Pathway (AOP) for skin sensitization and is the first harmonized test guideline based on genomics and machine leaning. A modified version of the validated protocol incorporating dose-response measurements has recently been described which uses linear models for the prediction of LLNA EC3/Human No Expected Sensitization Induction Levels (NESIL) values.

The aim of the following study, which represents a cross-sector collaboration involving industry, assay developer, and a non-profit research institute, were to perform a pre-validation exercise to evaluate the precision and reproducibility of the continous potency predictions from the GARDskin dose-response assay, and to demonstrate how the derived continous potency predictions can be implemented into available NGRA-framework to determine safe use levels in consumer products.

Predictive performance was estimated in a blinded study by evaluating a total of 17 fragrance materials, and reproducibility of the continous predictions was assessed by evaluating 11 of the materials in three replicate experiments. Results illustrate that predicted LLNA EC3/human NESIL values from the GARDskin Dose-response assay correlate well with reference data (geometric mean fold-error: 3.8 and 2.5, respectively), and that the continuous potency predictions are reproducible between experiments (geometric mean fold-change: 3.1). A case study using isocyclocitral was used to illustrate how the assay can be implemented into an NGRA-framework, which is an exposure driven risk assessment methodology. The predicted NESIL value from GARDskin Dose-response was used within a weight-of-evidence  approach to derive a PoD for use in QRA. Sensitization assessment factors were applied to the PoD to determine acceptable exposure levels at which no skin sensitization induction would be expected for different product types based on exposure.

In conclusion, the results reported from this study demonstrate that the predicted potency values from the GARDskin Dose-Response assay are reproducible between experiments and show good concordance with the published values. The case study illustrates a proof of concept and establish the assay as a relevant source of information to derive NESIL values for conducting QRA evaluations for fragrance materials without any new animal data.

 

 

 

 

Joint poster with RIFM and IFF: PoD determination of fragrance materials

GARDskin Dose-Response assay for PoD determination of fragrance materials and its application in conducting Quantitative Risk Assessment (QRA)


Presented at SOT 2023


Download a copy

 

 

Conclusion

  • The continous readout from the assay is reproductible and the assay predicts LLNA EC3 and human NESIL values with high correlation to reference benchmark data (geometric mean fold-misprediction factors of 3.8 and 2.5 respectively).
  • The assay provides a nice tool for the fragrance industry to predict the NESIL value to be used for conducting the quantitative risk assesment for generating the IFRA standard.

Abstract

The global fragrance industry applies Quantitative risk assessment (QRA) to develop risk management practices (IFRA Standards) for ingredients that are identified as potential dermal sensitizers. An important step in QRA is determination of a ”No Expected Sensitization Induction Level” (NESIL), which has historically been determined using human data with the support of animal data (e.g., murine local lymph node assay (LLNA). The EC3 value determined in the LLNA is used as the guidance for selection of the dose level in HRIPTs (Human Repteated Insult Patch Test) to confirm a NESIL value. The fragrance industry has adopted new approach methodologies (NAM) to address skin sensitization. Although several NAMs for identifying skin sensitizers have been accepted as Test Guidelines by OECD, these methods have thus far been validated only for hazard identification. Since a NESIL value is a key requirement to evaluate sensitizing potency for conducting QRA evaluations, development of a NAM-based strategy capable of providing potency data in the form of NESIL remains a high priority for the fragrance industry. The in vitro GARDskin assay was recently adopted by the OECD (TG 442E) for the hazard identification of skin sensitizers. Continuous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have further been developed to predict LLNA EC3 and human NESIL values. The aim of the study was to evaluate the precision and reproducibility of the continuous potency predictions from the GARDskin Dose-Response assay. A total of 17 test materials were evaluated, 11 of which were evaluated in three blinded studies separated in time. Preliminary results indicated that the GARDskin Dose-Response model predicted LLNA EC3 values and human NESIL values with geometric mean fold-misprediction factors of 3.8 and 2.5, respectively. For comparative reasons, the LLNA EC3 predicted the human NESIL values with a fold-misprediction factor of 3.7 in the same dataset. Results from the repeated assessment of the test materials were reproducible, with an estimated geometric mean range of fold-changes between replicates of 2.9. Using isocyclocitral (CAS 1335-66-6) as an example, a QRA was conducted to determine its safe use levels in different consumer product types. The results demonstrate that the LLNA EC3 values and the human NESIL values predicted from the GARDskin Dose-Response assay are reproducible between experiments and show good concordance with the published NESIL and EC3 values. Together with the reported performance data, this represents a major step towards the establishment of the assay as a relevant source of information to derive NESIL values for conducting QRA evaluations for fragrance materials to ensure product safety while avoiding the generation of new animal data.

 

 

 

 

Joint poster with RIFM: ​Assessment of Reference Photoirritants and Photoallergens using GARD

GARD®skin Dose-Response for Photosensitization: ​Assessment of Reference Photoirritants and Photoallergens


Presented at SOT 2023

 

Download a copy

 

Conclusion

  • Increase in cytotoxicity after UV exposure strongly linked with predominantly photo irritating properties.
  • Decrease in GARDskin Dose-Response cDV0-value after UV exposure indicative of photoallergenic properties​.

Abstract

Dermal exposure to certain chemical compounds, so-called sensitizers, can give rise to adverse outcomes induced by an immunological response towards the specific compound. One such class of compounds, photosensitizers, needs to be activated by UV rays to elicit an immune response. Although rare in occurrence, it is a critical human health endpoint in need of investigation to limit potential exposures. Other phototoxic skin reactions include photoirritation, which is manifested as a one-time occurrence at the site of exposure that goes away over time. While testing schemes for photoirritation are clear, testing for photosensitization remains a challenge and no established in vitro model to evaluate this endpoint currently exists. For risk management purposes, distinguishing between phototoxic properties is important, as concentration limits can be set for photoirritants whereas fragrance photoallergens have historically been banned. 

The GARDskin assay is a next-generation in vitro method for hazard classification of conventional skin sensitizers, included in OECD TG 442E. The assay is based on a human dendritic -like cell line and combines genomics and machine learning to achieve a high predictive performance with a large applicability domain. The GARDskin Dose-Response assay is based on the validated GARDskin protocols but instead of giving a binary classification it provides quantitative information about the lowest concentration needed to induce a positive classification in the assay, termed the cDV0 concentration. To investigate phototoxicity, an extra UV-exposure step was added to the original protocol, with photosensitization determined by a drop in cDV0 concentration after UV-exposure, i.e., the cDV0 concentration of the specific compound is lower after UV-exposure than in the non-exposed counterpart.  

The study presented here aimed at investigating the applicability of the GARDskin Photo Dose-Response assay to correctly assess photoallergens and distinguish them from photoirritant effects. Previous studies have indicated that a shift in cytotoxic profile after UV-exposure may indicate a predominantly photoirritant activity rather than photosensitizing and this was also investigated in the present study. Six reference photoirritants and six reference photoallergens were investigated using the GARD®skin Dose-Response assay in combination with a UV irradiation protocol. Cytotoxic profiles and cDV0-values were established for each compound in the presence and absence of UV exposure. 5 out of 6 photoirritants were correctly predicted based on their cytotoxic profile while 3 out of 6 photoallergens where correctly predicted based on the decrease in cDV0-value after UV-exposure. In conclusion, functionality of combining GARDskin Dose-Response protocols with UV irradiation to investigate phototoxicity was shown. Further, photoirritant effects were strongly correlated to a shift in cytotoxic profile after UV-exposure and a decrease in cDV0 values after UV-exposure may indicate on photosensitizing effects. However, further work may be warranted to establish a final prediction model for photosensitization.  

Keywords: Predictive Toxicology, GARDskin, Phototoxicity, Quantitative Risk Assesment

 

 

 

 

Next Generation Risk Assessment (NGRA) using NAMs for skin sensitization: Reproducibility and precision of the GARDskin Dose-Response assay for PoD determination of fragrance chemicals.

Presented at ASCCT 2022

Next Generation Risk Assessment (NGRA) using NAMs for skin sensitization: Reproducibility and precision of the GARDskin Dose-Response assay for PoD determination of fragrance chemicals.

Andy Forreryd1, Shashi Donthamsetty2, Paul Sterchele2, Xiao Huang2, Gregory Ladics2, Mihwa Na3, Isabelle Lee3, Anne Marie Api3, Robin Gradin1, Henrik Johansson1
1SenzaGen, Lund, Sweden , 2International Flavors & Fragrances, Hazlet, NJ, USA, 3Research Institute for Fragrance Materials. Woodcliff lake, NJ, USA

Download a copy

 

Conclusion

  • GARD®skin Dose-Response can be used for continous predictions of skin sensitizing potency.
  • The continous readout from the assay is reproducible and the assay predicts LLNA EC3 and human NESIL values with high correlation to reference benchmark data.
  • The assay provides a nice tool for the fragrance industry to predict the NESIL value which can be used for conducting the quantitative risk assessment for generating the IFRA standard.

Abstract

New Approach Methods (NAMs) for assessment of skin sensitizers have been adopted as Test Guidelines (TGs) by OECD. When combined into Integrated Approaches to Testing and Assessment (IATA) or defined approaches (DA), they provide data supporting hazard classifications and GHS potency subcategorization. However, more granular potency information, preferably on a continuous scale, is needed to derive a point-of-departure (PoD) for Next Generation Risk Assessment (NGRA).

GARDskin was recently adopted into OECD TG 442E to support discrimination of skin sensitizers and non-sensitizers. Continous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have further been developed to predict LLNA EC3 and human NOEL values. The aim of the following study, which represents a cross-sector collaboration was to evaluate precision and reproducibility of the potency predictions from GARDskin Dose-Response in blinded studies.

Preliminary results from estimate of precision (n=36 materials) indicated that GARDskin Dose-Response predicted LLNA EC3/ human NOEL values with median fold-misprediction factors < 3.0 and < 2.0, respectively. Interestingly, LLNA predicted human NOEL with a fold-change > 2 in the same dataset. For reproducibility assessment, test materials (n=11) were evaluated in separate experiments (n=3), which generated highly reproducible results, with an average median range of fold-changes between replicates of 2.5.

Results from this study demonstrate that continous potency predictions from GARDskin Dose-Response are reproducible. Together with performance data, this represents a major step towards establishment of the assay as a relevant source of information to derive a PoD for NGRA, avoiding generation of new animal data.

 

 

 

The use of the GARD®skin Dose-Response assay to assess skin sensitizing potency in developing novel fragrance ingredients

Presented at ASCCT 2022

The use of the GARD®skin Dose-Response assay to assess skin sensitizing potency in developing novel fragrance ingredients

Tim Lindberg1, Christopher Choi2, Ulrika Mattson1 and Satoshi Sasaki3
1SenzaGen, Lund, Sweden , 2Takasago International Corp, Rockleigh NJ, USA ,3Takasago International Corp, Hiratsuka city, Kanagawa, Japan

Download a copy

 

Conclusion

The present study aimed at investigating the skin sensitizing potency of two novel fragrances, Fragrance 1 and 2, using three NAMs, the kDPRA, KeratinoSens and GARD®skin Dose-Response assays.

To move away from traditional safety testing, which includes animal studies, there is a paradigm shift towards the use of multiple NAMs in a weight-of-evidence approach when risk assessment of novel fragrance ingredients are conducted. However, the lack of established potency assays puts the alternative methods at a disadvantage as compared to the in vivo counterparts.

  • Fragrance 1 showed similar results across the three NAMs, with the GARD®skin Dose-Response assay predicting the cDV0–value to 18.4 µM, which in turn was used to predict a NESIL-value of 659 µg/cm2.
  • For Fragrance 2, equivocal results were seen, where the kDPRA assay predicting the ingredient not to be a category 1A skin sensitizer while KeratinoSens predicted it as a non-skin sensitizer. GARD®skin Dose-Response predicted the cDV0–value to 296 µM, which was used to predict a NESIL-value of 16600 µg/cm2. Combining the results from all three NAM assays, a confirmatory HRIPT testing concentration was determined for both ingredients, 562.5 µg/cm2 and 15000 µg/cm2 for Fragrance 1 and Fragrance 2, respectively.

In conclusion the data presented here show how the use of the GARD®skin Dose-Response assay in combination with other NAMs can be used as a replacement of animal studies for quantitative risk assessment of novel fragrance materials.

Abstract

Skin sensitization is one of the required endpoints for the development and registration of novel fragrance ingredients. Traditionally, testing has been performed using a combination of in vitro and in vivo assays, but recent developments has shifted the paradigm towards the use of New Approach Methodologies (NAMs), without the need for in vivo methods. However, none of the proposed NAMs are currently validated for continuous potency predictions, which is required for quantitative risk assessments of novel fragrance ingredients.

The GARD®skin assay (OECD TG 442E) is a genomics-based assay for hazard identification of sensitizers. To meet the need for quantitative potency information, GARD®skin Dose-Response has been developed based on the validated protocols of GARD®skin and generates a dose-response curve to identify the lowest concentration of a test compound required to elicit a positive classification (cDV0 value). These values correlate significantly to LLNA EC3 and human NESIL values.

The aim of this study was to investigate the sensitizing potency of two novel fragrance ingredients and to identify predicted non-sensitizing levels. Testing was performed in GARD®skin Dose-Response, with predicted EC3 and NESIL values of 1.93% and 27.8%, and 659µg/cm2 and 16600µg/cm2, for fragrance ingredients 1 and 2, respectively. These results in combination with data from kDPRA, KeratinoSens and in silico read- across, established the concentrations for confirmatory HRIPT testing (562.5µg/cm2 and 15000µg/cm2).

In conclusion, this study demonstrates how GARD®skin Dose-Response combined with other NAMs can be used for risk assessments and to establish a concentration for confirmatory HRIPT testing of novel fragrance ingredients.