Inter-laboratory ring trial of the GARD™air assay for assessment of respiratory sensitizers

Andy Forreryd1, Joshua Schmidt1, Robin Gradin1, Florence Burleson, Helge Gehrke3, Henrik Johansson1.
1SenzaGen AB, Lund, Sweden. 2Burleson Research Technologies, Morrisville, NC, USA. 3Eurofins BioPharma Product Testing Munich GmbH, Planegg, Germany.

Sensitization of the respiratory tract by sensitizing chemicals may lead to severe bronchoconstriction and asthma-like symptoms with a potentially fatal outcome. However, proactive identification and characterization of respiratory sensitization hazards is currently hampered by the lack of validated or even widely used predictive assays.

The GARD™ platform utilizes exposure-induced gene expression profiles of a dendritic cell-like cell line in combination with machine learning as a basis for predictive in vitro assays for different immunotoxicity endpoints (Johansson et al., 2020). Functional evidence of the ability to accurately identify respiratory sensitizers using the GARD platform has previously been demonstrated (Forreryd et al., 2015). Here, we present GARDair, an adaptation of previous findings on a gene expression analysis platform suited for routine acquisition, based on an optimized predictive biomarker signature. Furthermore, we present the initial results of an inter-laboratory ring-trial, demonstrating the functionality, transferability and reproducibility of the assay.

Conclusion

  • GARDair is a novel in vitro assay for assessment of respiratory sensitizers, based on evaluation of exposure-induced gene expression of genomic biomarkers in a Dendritic Cell-like cell and machine-learning assisted classification.
  • GARDair is the first in its class to be subjected to an inter-laboratory ring trial.
  • The method is highly specific, with high PPV, making it suitable for opt-out applications within product development and candidate prioritization.

Link to poster

Poster abstract accepted at SOT 2020. 

GARD™air – A novel assay for assessment of chemical respiratory sensitizers based on a genomic platform

Henrik Johansson, Andy Forreryd, Robin Gradin, Angelica Johansson, Olivia Larne, Emil Aaltonen, Anders Jerre, Carl A.K. Borrebaeck and Malin Lindstedt
SenzaGen AB, Lund, Sweden. Department of Immunotechnology, Lund, Sweden.

Introduction
Exposure to chemicals may induce allergic hypersensitivity reactions in skin or respiratory tract. To minimize exposure, chemicals are routinely screened for their sensitizing potential. Proactive identification has historically been performed using animal models, but the use of animals for safety assessment of cosmetics was recently banned within EU. Today, similar trends are spreading both globally and across industry and market segments. Methods for specific identification of respiratory sensitizers are greatly underdeveloped, with no validated, or even widely used assay readily available. Thus, there is an urgent need for development of non-animal-based methods for hazard classification of respiratory sensitizing chemicals.

GARD– Genomic Allergen Rapid Detection – is a state of the art technology platform for assessment of chemical sensitizers (Figure 1). It is based on a dendritic cell (DC)-like cell line, thus mimicking the cell type involved in the initiation of the response leading to sensitization. Following test chemical exposure, induced transcriptional changes are measured to study the activation state of the cells. These changes are associated with the immunological decision-making role of DCs in vivo and constitutes of e.g. up-regulation of co-stimulatory molecules, induction of cellular and oxidative stress pathways and an altered phenotype associated with recognition of xenobiotic matter. By using state-of-the-art gene expression technologies, high informational content data is generated, that allows the user to get a holistic view of the cellular response induced by the test substance.

Conclusion
GARDair is a novel assay for assessment of respiratory sensitizers. It is an adaptation of the GARD platform, utilizing gene expression analysis of predictive biomarker signatures and state-of-the-art data analysis methodology. GARDair has been proven functional and is currently progressing towards industrial implementation and  regulatory acceptance with financial support from the EU programme Horizon 2020. This progress includes scientific verification of results, assay optimization, assay
transfer and formal validation by a blinded ring trial.

Link to poster

Prediction of chemical respiratory sensitizers using GARD™

a novel in vitro assay based on a genomic biomarker signature

Henrik Johansson, Andy Forreryd, Robin Gradin, Angelica Johansson, Olivia Larne, Emil Aaltonen, Anders Jerre, Carl A.K. Borrebaeck and Malin Lindstedt
SenzaGen AB, Lund, Sweden. Department of Immunotechnology, Lund, Sweden.

 

Introduction

Exposure to chemicals may induce allergic hypersensitivity reactions in skin or respiratory tract. To minimize exposure, chemicals are routinely screened for their sensitizing potential. Proactive identification has historically been performed using animal models, but the use of animals for safety assessment of cosmetics was recently banned within EU. Today, similar trends are spreading both globally and across industry and market segments. Methods for specific identification of respiratory sensitizers are greatly underdeveloped, with no validated, or even widely used assay readily available. Thus, there is an urgent need for development of non-animal based methods for hazard classification of respiratory sensitizing chemicals.
GARD – Genomic Allergen Rapid Detection – is a state of the art technology platform for assessment of chemical sensitizers (Figure 1). It is based on a dendritic cell (DC)-like cell line, thus mimicking the cell type involved in the initiation of the response leading to sensitization. Following test chemical exposure, induced transcriptional changes are measured to study the activation state of the cells. These changes are associated with the immunological decision-making role of DCs in vivo and constitutes of e.g. up-regulation of co-stimulatory molecules, induction of cellular and oxidative stress pathways and an altered phenotype associated with recognition of xenobiotic matter. By using state-of-the-art gene expression technologies, high informational content data is generated, that allows the user to get a holistic view of the cellular response induced by the test substance.

Conclusion

GARDair is a novel assay for assessment of respiratory sensitizers. It is an adaptation of the GARD platform, utilizing gene expression analysis of predictive biomarker signatures and state-of-the-art data analysis methodology. GARDair has been proven functional and is currently progressing towards industrial implemetation with financial support from the EU programme Horizon 2020. This progress will include scientific verification of results, assay optimization, transfer and formal validation.

Poster:

Prediction of chemical respiratory sensitizers using GARD_LIVe2018

The In Vitro assessment of Respiratory Sensitisation Potential of Electronic Cigarette Liquids

Matthew Stevenson, Lukasz Czekala, Liam Simms, Nicole Tschierske, Henrik Johansson, Tanvir Walele
Imperial Tobacco Ltd, Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, SenzaGen AB, Fontem Ventures B.V., an Imperial Brands PLC Company,

 

Introduction and Objectives

There is a general consensus amongst the scientific and public health community that e-cigarettes constitute a less harmful source of nicotine than combustible cigarettes, and that flavours play a critical role in attracting and retaining smokers into the vaping category. Due to the dynamic nature of innovation with e-cigarettes new assays are required to quickly determine the subtle biological response of these products for product stewardship activities. The size of this task is considerable as recent estimates state that more than 8,000 e-liquid flavours are on the market (Hartung, 2016). One particular toxicological endpoint which is of interest for the Stewardship of e-liquids, is Respiratory Sensitisation.
Respiratory sensitization (RS) is an allergic type I hypersensitivity reaction of the upper and lower respiratory tract caused by an immune response triggered by low molecular weight compounds or other environmental proteins. Clinical symptoms of RS include asthmatic attacks, bronchoconstriction and wheezing upon repeated exposure to the same compound. However, respiratory sensitisers are rare, with around 100 well characterised substances described in the literature.
It is Fontem Ventures policy to screen all novel e-liquid ingredients for Respiratory sensitising activities using published literature and in silico techniques. However, there is a need for alternative techniques to fill data gaps and add to a weight of evidence. Several in vitro assays have been described and validated to assess skin sensitisation, however for respiratory sensitization there are no validated predictive assays. It is of note that not all skin sensitizers are also respiratory sensitizers. In 2015, Basketter and Kimber concluded that “…airborne fragrance materials, including skin sensitising fragrance materials, do not pose a risk of the induction or elicitation of allergic reactions consequent upon exposure via the respiratory tract”. Therefore, it is critical that any assays developed to determine the sensitising properties of a chemical can distinguish between dermal and respiratory activity.
The objective of this study was to assess experimental and commercial e-liquids in GARDair™; an assay which claims to detect respiratory sensitisers.
GARDair measures the genomic biomarker signature of a human myeloid leukemia-derived cell line exposed to test substances; making this technology in keeping with the 3Rs (Reduce, Replace and Refine) and Toxicity Testing in the 21st Century principles. Gene expression analysis is performed using Affymetrix microarray technology and a prediction model is used to classify each sample according to its respiratory sensitizing potential.

 

Conclusions

• From the Benchmark Control data it was estimated that GARDair™ had a sensitivity and specificity of 71% and 100% respectively; with an overall predictive accuracy estimated as 89%.
• Extensive validation of this assay is ongoing, however, the lack of well characterised Chemical Respiratory Sensitisers may limit this.
• None of the experimental or commercial samples were classified as respiratory sensitisers.
• Further exploration of this assay is required, particularly its ability to detect low concentrations of sensitiser in complex mixtures and to ensure that the e-liquid matrix does not interfere with the detection of activity.

Poster:
The In Vitro assessment of Respiratory Sensitisation Potential of Electronic Cigarette Liquids_British ToxSocCong 2018 Imperial