Joint publication with IFF and RIFM: GARDskin dose-response assay and its application in conducting Quantitative Risk Assessment (QRA) for fragrance materials using a Next Generation Risk Assessment (NGRA) framework

New joint publication with International Flavors & Fragrances Inc (IFF) and Research Institute for Fragrance Materials (RIFM).

SenzaGen scientists, alongside the scientific teams at International Flavors & Fragrances Inc and Research Institute for Fragrance Materials, have jointly published an article in Regulatory Toxicology and Pharmacology, presenting new peer-reviewed evidence on the performance of the GARD®skin Dose-Response assay for Quantitative Risk Assessment of fragrance materials.

The study results confirm the ability of GARD®skin Dose-Response to predict human NESIL values with good predictive performance, showing good concordance with published reference Human data and demonstrating good reproducibility.

Furthermore, the paper also presents a case study to illustrate how the predicted NESIL value from GARDskin Dose-Response can be used in practice within a NGRA framework to establish a maximum allowable concentration of a sensitizer in different consumer products.

The study represents a major step towards the establishment of the assay to derive NESIL values for conducting QRA evaluations for fragrance materials using an NGRA framework.

Shashikiran Donthamsetty, Andy Forreryd, Paul Sterchele, Xiao Huang, Robin Gradin, Henrik Johansson, Ulrika Mattson, Isabelle Lee, Anne Marie Api, Gregory Ladics,
Regulatory Toxicology and Pharmacology, Volume 149, 2024, 105597, ISSN 0273-2300,
https://doi.org/10.1016/j.yrtph.2024.105597

Keywords

QRA (Quantitative Risk Assesment); Dermal sensitization; Fragrance materials; Next Generation Risk Assesment (NGRA); GARD assay; No Expected Sensitization Induction Level (NESIL); New Approach Methodologies (NAMs); OECD 442E

Highlights

  • Developed a Next Generation Risk Assessment (NGRA) framework for conducting QRA2 for fragrance materials.
  • The GARDskin Dose Response (DR) assay is a reliable and reproducible method for predicting NESIL for fragrance materials.
  • NGRA for QRA2 was validated using isocyclocitral as a case study.


Abstract

Development of New Approach Methodologies (NAMs) capable of providing a No Expected Sensitization Induction Level (NESIL) value remains a high priority for the fragrance industry for conducting a Quantitative Risk Assesment (QRA) to evaluate dermal sensitization. The in vitro GARDskin assay was recently adopted by the OECD (TG 442E) for the hazard identification of skin sensitizers. Continuous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have been developed to predict human NESIL values. The aim of the study was to evaluate the precision and reproducibility of the continuous potency predictions from the GARDskin Dose-Response (DR) assay and its application in conducting QRA for fragrance materials using a Next Generation Risk Assessment (NGRA) framework. Results indicated that the GARDskin Dose-Response model predicted human NESIL values with a good degree of concordance with published NESIL values, which were also reproducible in 3 separate experiments. Using Isocyclocitral as an example, a QRA was conducted to determine its safe use levels in different consumer product types using a NGRA framework. This study represents a major step towards the establishment of the assay to derive NESIL values for conducting QRA evaluations for fragrance materials using a NGRA framework.

Evaluation of the applicability of GARDskin to predict skin sensitizers in extracts from medical device materials

Peer-reviewed article in Frontiers in Toxicology.

The application of GARD®skin to predict potential skin sensitizers in extracts from Medical Device materials has recently been published in a peer-reviewed article in Frontiers in Toxicology.

The study results provide evidence recognizing the GARD®skin Medical Device assay as a scientifically sound and ethical alternative to conventional animal methods, compatible with both polar and non-polar extraction vehicles, in line with the ISO 10993-12:2021 standard.

We are proud to provide the only OECD-validated in vitro assay for sensitization that is fully compatible with testing requirements specified in ISO 10993-12.

Jenvert Rose-Marie, Larne Olivia, Johansson Angelica, Berglin Mattias, Pedersen Emma, Johansson Henrik
Frontiers in Toxicology, Volume 6, 2024,ISSN 2673-3080
DOI=10.3389/ftox.2024.1320367

Keywords

GARD™; In vitro; Skin sensitisation; NAMs; Medical Device, ISO 10993, Biocompatibility

Abstract

Biocompatibility testing of medical devices is governed by the ISO 10993 series of standards and includes evaluation of skin sensitization potential of the final product. A majority of all medical devices are tested using in vivo methods, largely due to the lack of in vitro methods validated within the applicability domain of solid materials. The GARDskin method for assessment of chemical skin sensitizers is a validated method included in the OECD Test Guideline 442E, based on evaluation of transcriptional patterns of an endpoint-specific genomic biomarker signature in a dendritic cell-like cell, following test chemical exposure. The current study aimed to evaluate the applicability of GARDskin for the purpose of testing solid materials by incorporation of extraction procedures described in ISO 10993-12:2021, as well as to demonstrate the functionality of the proposed protocols, by testing of custom-made materials spiked with sensitizing agents. It was shown that GARDskin is compatible with both polar and non-polar extraction vehicles frequently used for the purpose of medical device biological testing. Further, exploring three different material types spiked with up to four different sensitizing agents, as well as three unspiked control materials and commercial reference products, it was shown that the method correctly classified all evaluated test materials. Taken together, the data presented suggest that GARDskin may constitute a valid alternative to in vivo experimentation for the purpose of skin sensitization assessment of medical devices.

 

Joint publication with Corteva Agriscience: GARD™skin and GARD™potency: A proof-of-concept study investigating applicability domain for agrochemical formulations

New joint publication with Corteva Agriscience.

SenzaGen scientists, alongside the toxicology team at Corteva Agriscience, have recently published a joint study in Regulatory Toxicology and Pharmacology, presenting new peer-reviewed evidence on the applicability of GARD® for agrochemical formulations.

The study demonstrates a satisfactory performance of GARD®skin and GARD®potency for skin sensitization hazard and GHS potency categorization of tested agrochemical formulations.

Marco Corvaro, Joseph Henriquez, Raja Settivari, Ulrika Mattson, Andy Forreryd, Robin Gradin, Henrik Johansson, Sean Gehen,
Regulatory Toxicology and Pharmacology, Volume 148, 2024, 105595, ISSN 0273-2300,
https://doi.org/10.1016/j.yrtph.2024.105595.

Keywords

GARD™; In vitro; Skin sensitisation; NAMs; Agrochemical formulations

Highlights

  • Tested 42 agrochemical formulations to expand applicability domain of GARD.

  • GARDskin showed good accuracy (76.2%), sensitivity (85.0%) and specificity (68.2%).
  • GARDpotency correctly subcategorized 14/17, correctly predicted sensitisers.
  • GARD satisfactory for Key Event 3 characterisation of agrochemical formulations.


Abstract

Several New Approach Methodologies (NAMs) for hazard assessment of skin sensitisers have been formally validated. However, data regarding their applicability on certain product classes are limited. The purpose of this project was to provide initial evidence on the applicability domain of GARD™skin and GARD™potency for the product class of agrochemical formulations.

For this proof of concept, 30 liquid and 12 solid agrochemical formulations were tested in GARDskin for hazard predictions. Formulations predicted as sensitisers were further evaluated in the GARDpotency assay to determine GHS skin sensitisation category. The selected formulations were of product types, efficacy groups and sensitisation hazard classes representative of the industry’s products.

The performance of GARDskin was estimated by comparing results to existing in vivo animal data. The overall accuracy, sensitivity, and specificity were 76.2% (32/42), 85.0% (17/20), and 68.2% (15/22), respectively, with the predictivity for liquid formulations being slightly higher compared to the solid formulations. GARDpotency correctly subcategorized 14 out of the 17 correctly predicted sensitisers. Lack of concordance was justifiable by compositional or borderline response analysis. In conclusion, GARDskin and GARDpotency showed satisfactory performance in this initial proof-of-concept study, which supports consideration of agrochemical formulations being within the applicability domain of the test methods.