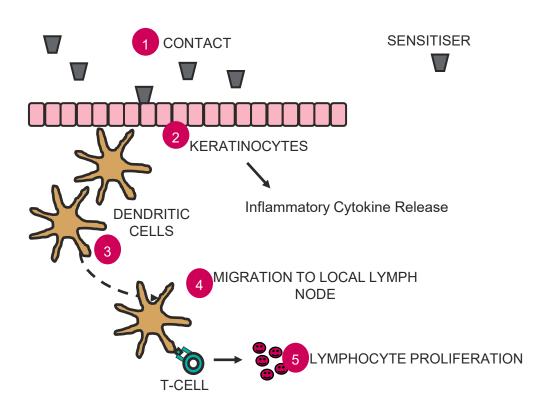


Your Guide to GARD

NEW GENERATION SKIN SENSITISATION TESTING TECHNOLOGIES EXPLAINED


Dr Carol Treasure

15th September 2020, Webinar

Hazard identification and potency assessment for human skin sensitisation: the role of GARD®skin and GARDpotency

Skin sensitisation leading to allergy adverse outcome pathway (AOP)

KEY EVENTS IN SKIN SENSITISATION AND RELATED TESTS

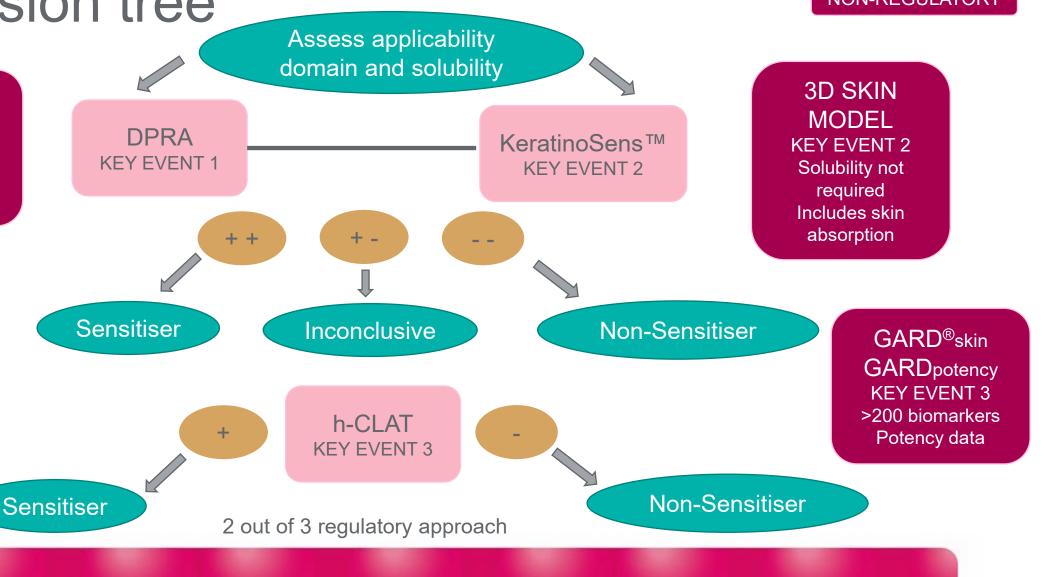
- 1. Contact (Direct Peptide Reactivity Assay – **DPRA**)
- 2. Release of Pro-Inflammatory Cytokines by Keratinocytes (KeratinoSens™)
- 3. Dendritic Cell Activation/Maturation (human Cell Line Activation Test – h-CLAT, GARD®skin)
- 4. Migration
- 5. T-cell Proliferation (Local Lymph Node Assay - LLNA)

A truly global effort! – tests developed in Switzerland, Sweden, US and Japan

Current regulatory guidance favours "2 out of 3" approach

In vitro skin sensitisation testing

WHY 2 OUT OF 3?


In vitro tests replacing a complex *in vivo* pathway; Advanced mechanistic data on human response.

- DPRA (OECD TG 442c)
- KeratinoSens™ (OECD TG 442d)
- h-CLAT (OECD TG 442e)

In vitro skin sensitisation testing – decision tree

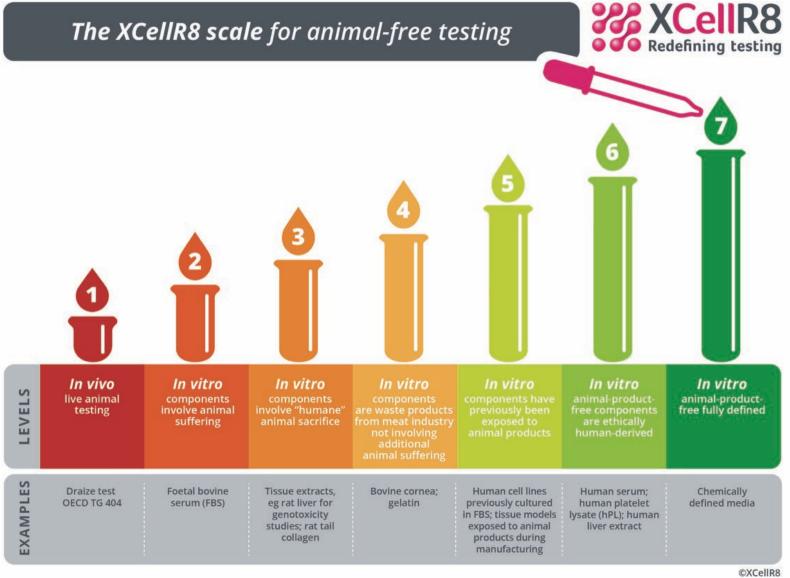
KEY: **REGULATORY** NON-REGULATORY

Kinetic DPRA (kDPRA) **KEY EVENT 1** Potency data

Why are potency predictions important?

- Recent article in Chemical Watch: over 50% REACH substances may require animal tests for skin sensitisation
 - Incompatibility with in vitro tests (eg UVCBs)
 - Potency data required to distinguish between GHS category 1A and 1B sensitisers
- Current *in vitro* regulatory tests provide limited potency data
- 2 ways to address this:
 - Drop sub-categories 1A and 1B, or:
 - Include potency tests in OECD Guideline on Define Approaches (DA) for Skin Sensitisation, once a potency TG is available.
- 47,000 skin sensitisation tests carried out on animals in EU in 2017, for research and regulatory testing – guinea pig tests as well as Local Lymph Node Assay (LLNA)

How the new animal-product-free version of GARD®skin can help support vegan tested claims



What is truly animal-free testing?

- All in vitro tests are not equal in terms of "animal-free" status
- Most in vitro methods use animal components
 - Fetal bovine serum
 - Tissue extracts
 - Antibodies
- Reasons are largely historical
- Truly animal-free testing needs to be animal-product-free
- Driven by:
 - **Science:** greater human relevance and higher reproducibility.
 - **Ethics:** consumer and industry demand for sustainable, ethical products (and ethical testing), eg vegan products require vegan-compliant testing

Adaptations of skin sensitisation tests have achieved Levels 5-7 (green zone)

- Preliminary validation data will be shared by Senzagen
- Complete: replacement of FBS with human serum
- Ongoing: animal-free antibodies

Applications:

- Product development (non-regulatory screening)
- Vegan tested claims
- Companies adopting APF conditions for scientific and ethical advantages
- Exclusively available through XCellR8

Thank you!

Dr Carol Treasure
carol.treasure@x-cellr8.com
www.x-cellr8.com

@XCellR8_Labs, drcaroltreasure

XCellR8 Ltd, Dr Carol Treasure

Xcellr8labs, drcaroltreasure

XCellR8

Your guide to the GARD platform

In vitro sensitization testing using Genomics and Machine Learning

Andy Forreryd, PhD September 15, 2020

GARD[™] assay portfolio

For skin and respiratory sensitization testing

GLP

Skin Sensitization

GARD[™]skin 200 genes

A robust *in vitro* assay to identify potential chemical skin sensitizers with over 90% prediction accuracy

GARD[™] potency 51 genes

An add-on *in vitro* test to GARDskin for potency classification according to GHS/CLP (1A or 1B)

Respiratory Sensitization

GARD™air 28 genes

The first *in vitro* assay capable of identifying chemical respiratory sensitizers

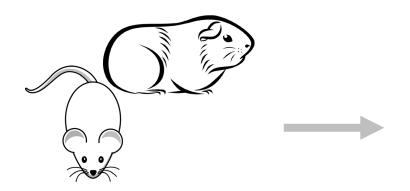
GARD[™] skin Medical Device 200 genes

A robust and accurate *in vitro* assay to test for skin sensitizers in Medical Device extracts according to ISO 10993-12: 2012

GARD[™] skin Dose-Response 200 genes

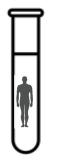
Quantitative potency assessments with high correlation to LLNA EC3 values and human potency

New


More information available at Senzagen.com/webinars

Ensuring reliable results and safe products

Replacing animal testing with modern technology


Traditional testing: In vivo

70-75% Accuracy against human data

- Long turnaround time
- Expensive
- Ethical considerations

First generation In vitro

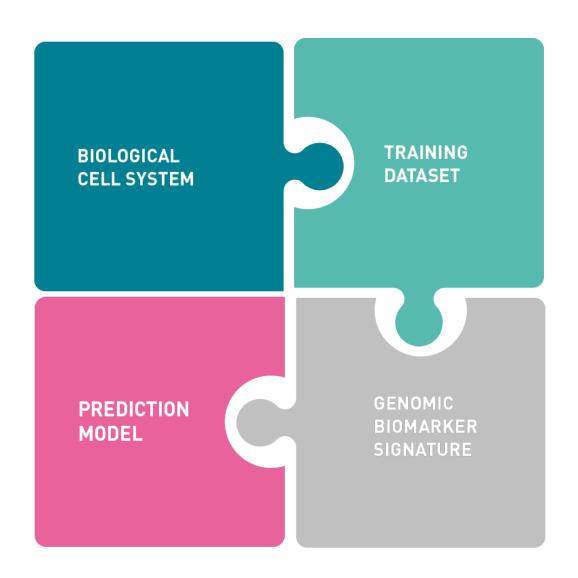
75-80% Accuracy

- Single biomarkers
- Limited mechanistic information
- No potency information
- Used within defined approaches

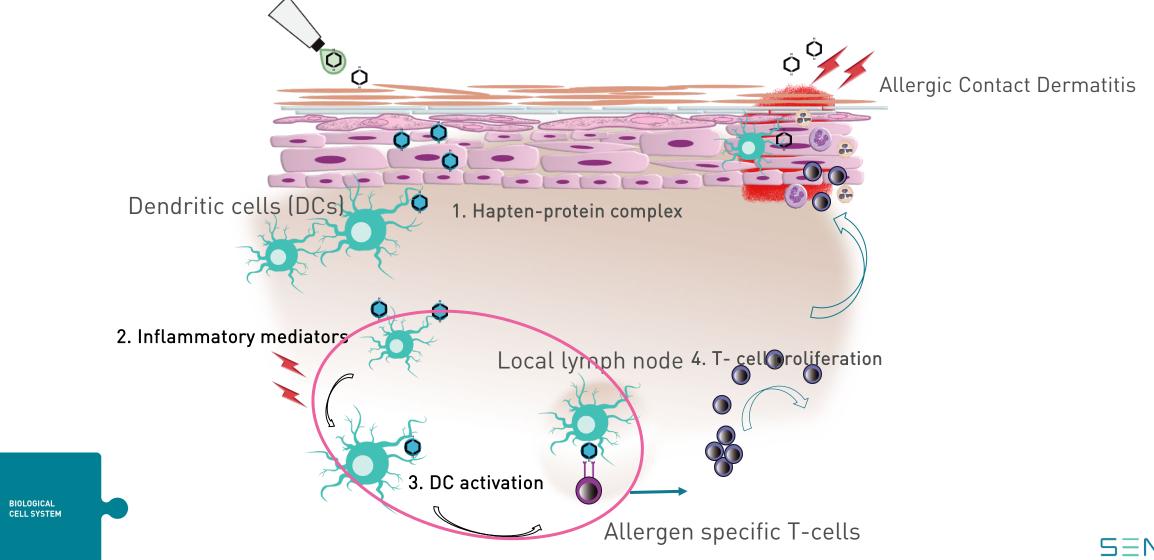
GARD: Next generation In vitro

Human cells Genomics Machine learning

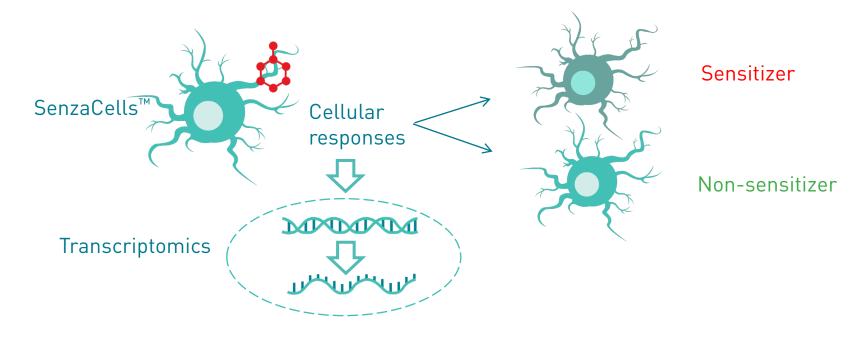
- Biomarker signatures & Toxicity pathways
- Potency information
- Reliable & mechanistically relevant results



The GARD[™] technology platform


Human relevant cells in combination with Genomics and Machine Learning

Based on a dendritic-like cell line - SenzaCells™

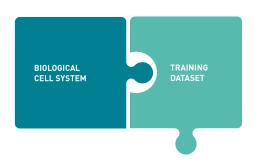



The GARD[™] technology platform – how it works

Transcriptomic read-out of the biological response

Assay Development: Hypothesis

- There should exist genes and pathways in DCs that are differentially expressed depending on the stimuli.
- Such genes could be used as predictive tools.



Reference compounds are used to create whole-genome training datasets

A human dendritic-like cell line (SenzaCells) were stimulated with a Reference set of chemicals.

Transcriptional levels of the genetic material was assessed with microarray technology

=29.000 genes/sample

Sensitizers

2,4-Dinitrochlorobenzene

Oxazolone

Potassium dichromate

Kathon CG (MC/MCI)

Formaldehyde

2-Aminophenol

2-nitro-1,4-Phenylendiamine

p-Phenylendiamine

Hexylcinnamic aldehyde

2-Hydroxyethyl acrylate

2-Mercaptobenzothiazole

Glyoxal

Cinnamaldehyde

Isoeugenol

Ethylendiamine

Resorcinol

Cinnamic alcohol

Eugenol

Penicillin G

Geraniol

Non-sensitizers

1-Butanol

4-Aminobenzoic acid

Benzaldehyde

Chlorobenzene

Diethyl phthalate

Dimethyl formamide

Ethyl vanillin

Glycerol

Isopropanol

Lactic acid

Methyl salicylate

Octanoic acid

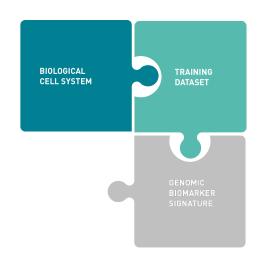
Propylene glycol

Pheno

p-Hydroxybenzoic acid

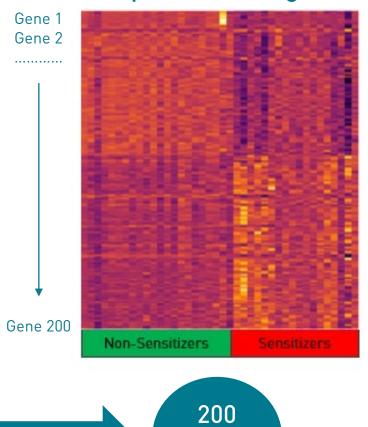
Potassium permanganate

Salicylic acid

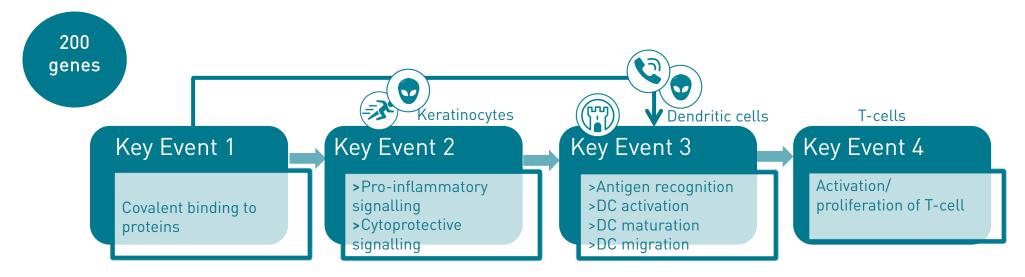

Sodium dodecyl sulphate



Data-driven biomarker signature identification


Data-driven biomarker identification

Data analysis identified differentially regulated genes in cells stimulated with **Skin sensitizers** or **Non-sensitizers**.


GARD prediction signature

genes

Biomarker signature cover mechanistically relevant pathways

Captures events downstream of KE1

Metabolic activity & identifies pre/pro haptens ALDH NAT-1 CYP - Cytochrome p-450

> Keap1-Nrf2-ARE pathway & AHR signalling NQ01 HMOX1

Thioredoxin reductase I

> Pro-Inflammatory cytokines mediating e.g. TNFa, INFy, IL-8

FAS MAP2KI COX20

PSTPIP1

> Inflammasome **NLRP**

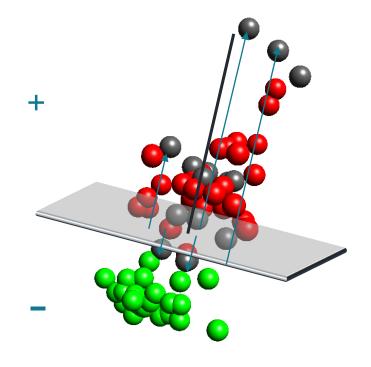
> DC migration & maturation CD86

MAPK- activation PKA- and GPCR- mediated signalling

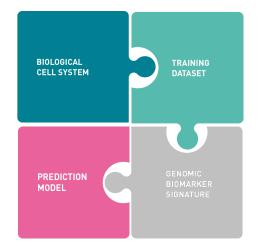
> Antigen recognition & Innate immune activation

TLR-4 TLR-6 RXRA - retinoic X receptor **NLRP** PSTPIP1

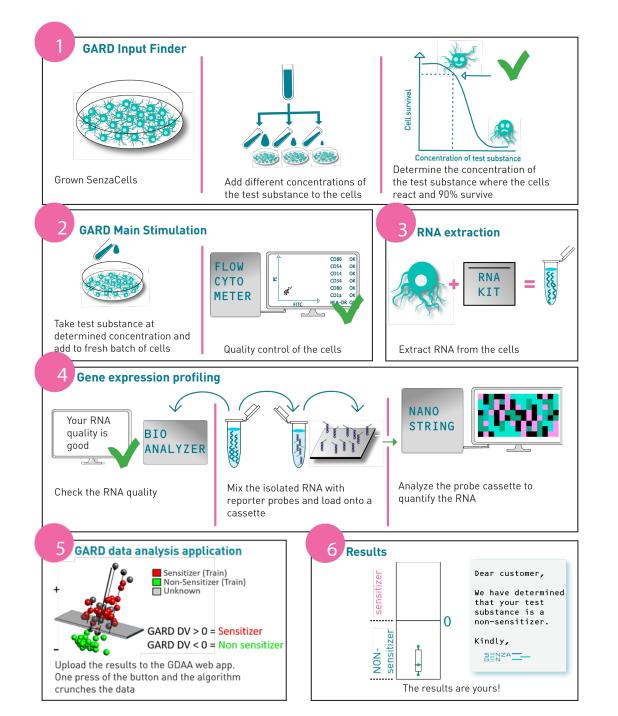
> Self-defence mechanisms C3a/C5a-activation pathways


Covers the 3 Key steps for T-cell activation:

Antigen presentation Co-stimulation Cytokine secretion



State-of-the-art machine learning provides transparent classifications


Decision value > 0 = Sensitizer
Decision value < 0 = Non sensitizer

All genes contribute to the final classification

How to GARD™ your products in 6 Steps

GARD[™] assay portfolio

For skin and respiratory sensitization testing

Skin Sensitization

GARD[™]skin 200 genes

A robust *in vitro* assay to identify potential chemical skin sensitizers with over 90% prediction accuracy

GARD[™] potency 51 genes

An add-on *in vitro* test to GARDskin for potency classification according to GHS/CLP (1A or 1B)

Respiratory Sensitization

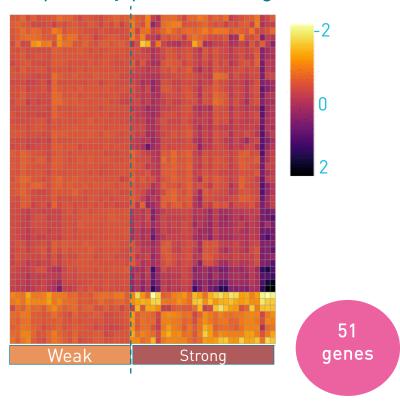
GARD™ air 28 genes

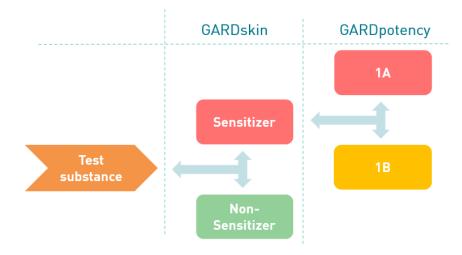
The first *in vitro* assay capable of identifying chemical respiratory sensitizers

GARD™skin Medical Device 200 genes

A robust and accurate *in vitro* assay to test for skin sensitizers in Medical Device extracts according to ISO 10993-12: 2012

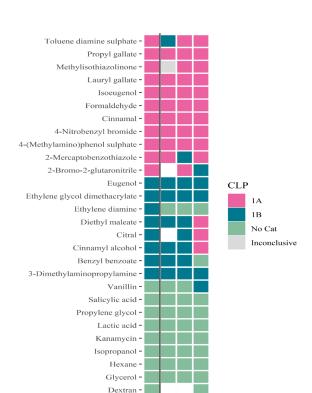
GARD[™] skin Dose Response 200 genes


Quantitative potency assessments with high correlation to LLNA EC3 values and human potency.


The GARD[™] potency assay

Sub-categorization of sensitizers according to GHS/CLP (weak/strong)

GARDpotency prediction signature


- GARDpotency classifies skin sensitizers according to GHS/CLP (strong/weak) using a complementary biomarker signature of 51 genes.
- Recommended to be used within a tiered approach:

Regulatory compliance OECD validation & REACH registrations

GARD™skin/potency are included in the OECD TGP (4.106). Under EURL ECVAM review and can already
now be used as WoE in REACH dossiers.

Results from validation study submitted to EURL ECVAM:

GARDskin accuracy: 94%

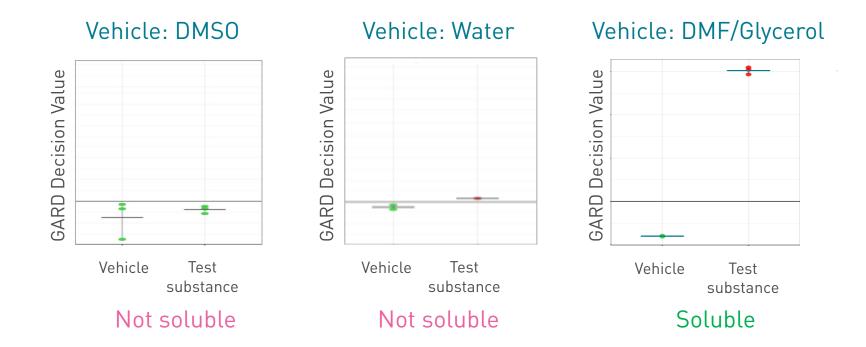
GARDpotency accuracy: 89%

The tiered testing strategy accuracy: 86%

Validation studies published in peer-reviewed scientific journals:

GARDskin: Published in Johansson et al. (2019), Validation of the GARDTMskin assay for assessment of chemical skin sensitizers - ring trial results of predictive performance and reproducibility. *Toxicological Sciences*.

GARDpotency: Published in Gradin et al. [2020], The GARDTMpotency Assay for Potency-Associated Subclassification of Chemical Skin Sensitizers - Rationale, Method Development and Ring Trial Results of Predictive Performance and Reproducibility. *Toxicological Sciences*.



GARD - Applicability for challenging samples

A range of solvents enable for testing also of samples with low water solubility

Background

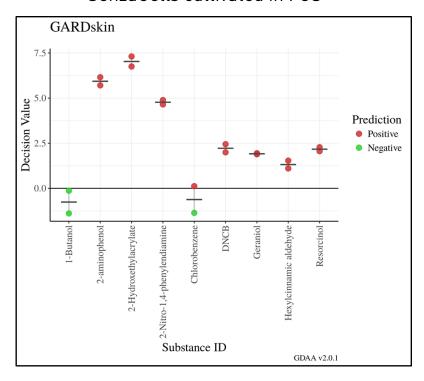
- Select solvent and concentration to increase bioavailability and avoid false negative classifications.
- Available solvents: Acetone | DMF | DMSO | Isopropanol | Ethanol | Glycerol | Olive oil | Sesame oil
- GARD is highly sensitive: An input concentration < 100 uM required to detect all sensitizers.

Example

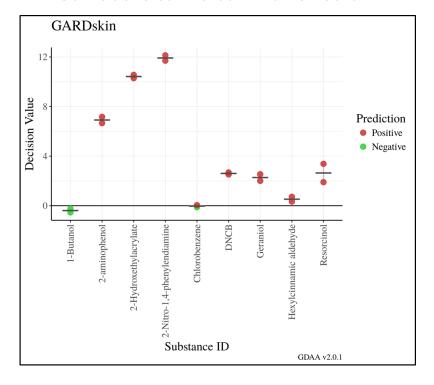
Testing of 7 hydrophobic UVCB samples (Unknown or Variable composition). No false negative, 6/7 consistent with available animal data.

GARD™skin APF

Animal Product-Free



GARD™skin - adaption to Animal Product Free (APF)


Background

- Replace animal-derived test components with non-animal products.
- Step 1: Replace FBS with human serum. Perform testing in GARDskin with a proficiency set of compounds (n=9).
- Step 2: Evaluate animal-free antibodies for cell maintenance QC. Ongoing work!

SenzaCells cultivated in FCS

SenzaCells cultivated in human serum

GARD™ summary

Unique skin sensitization test combination

Complex mixtures, fragrances, surfactants...

GARDskin for skin sensitizing hazard prediction with human relevance and high accuracy:

- Expertise with a broad range of difficult-to-test samples.
- For R&D or as WoE in regulatory testing.
- Use it alone or combine with other GARD tests for potency assessment.

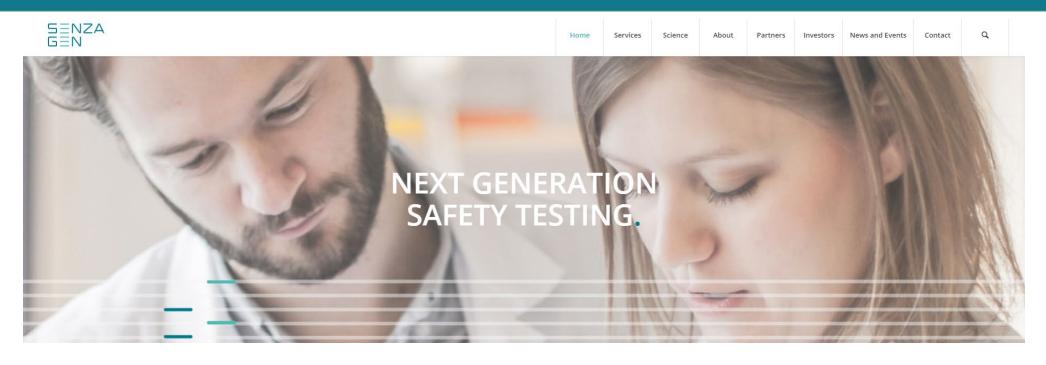
Difficult-to-test samples

Quantitative potency assessment

Use GARDpotency or GARDskin Dose-Response depending on your needs:

- GHS/CLP classification 1A or 1B.
- Potency ranking of candidate ingredients.
- Potency measurement that can be extrapolated to LLNA EC3 values and human potency category 1-6.

Potency assessment



Contact us

www.senzagen.com

Thank you for listening!

Andy Forreryd, PhD

Scientific Liaison Manager

andy.forreryd@senzagen.com

