

Cases and applications for testing of skin and respiratory sensitizers Andy Forreryd, PhD

Copyright Protected and all rights reserved. This is the property of SenzaGen and must not be reproduced in part or full without SenzaGen's written permission.

About SenzaGen

- Founded in 2010
- Spin-out from Lund University after over 10 years research
- Highly multidisciplinary team: 20+ employees today

- Business model: global industrial and CRO partnerships
- Own laboratory, continuous development of the technology

Our lead product, GARD™ stands for Genomic Allergen Rapid Detection and is a state-of-the art test platform for assessment of chemical sensitizers

Launched assays:

- GARD™skin/GARD™potency for skin sensitization
- GARDTMair for respiratory sensitization
- GARD TMskin Medical Device for skin sensitization assessment of medical devices

Items tested include:

- Active pharmaceutical ingredients
- Cosmetic ingredients
- Industrial chemicals
- Agrochemicals
- Medical device materials
- UVCBs, Pre-/pro haptens

- Since Sept. 2017, SenzaGen AB's shares have been traded on Nasdaq First North, Stockholm (SENZA)
- Partners in USA, EU, China, Korea

The GARD platform - Currently available assays

GARD™skin (200 genes)

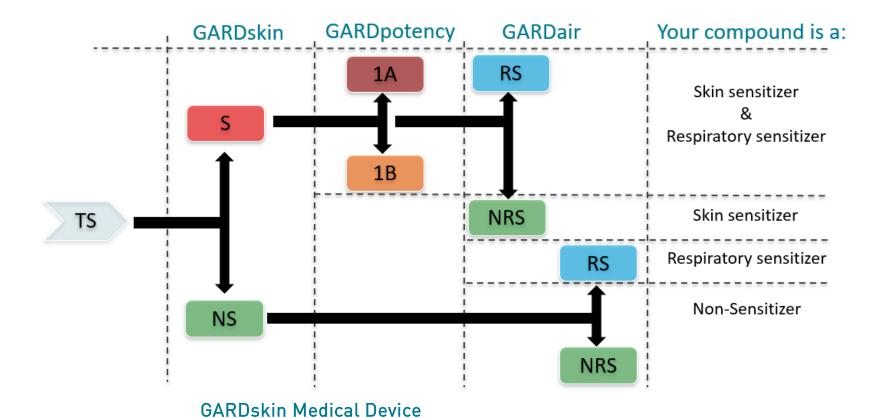
To identify the skin sensitization hazard of chemicals

GARD™skin Medical Device (200 genes)

To identify the skin sensitization hazard of medical devices

GARD[™]potency (51 genes)

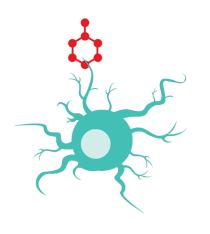
Skin sensitization potency classification according to GHS/CLP



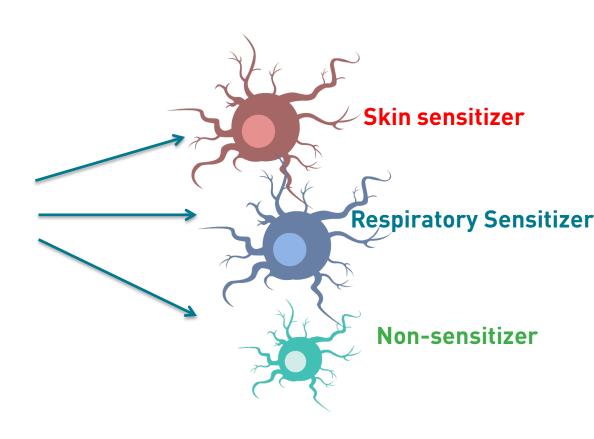
GARD™air (28 genes)

To identify the respiratory sensitization hazard of chemicals

The GARD platform - One testing platform for many answers



The GARD technology platform


Human relevant cells in combination with Genomics and machine learning

The GARD platform - how it works

SenzaCells: a human dendritic-like cell-line

Cellular responses

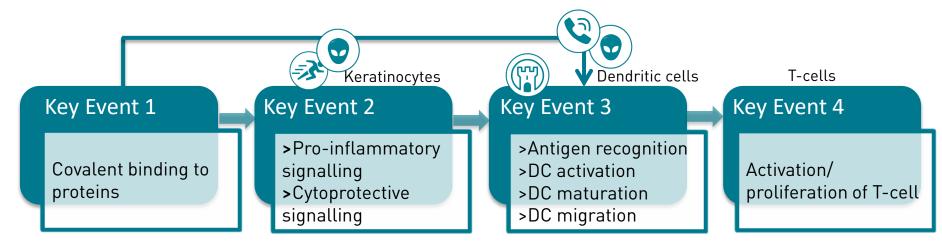
The GARD platform - how it works

Cellular response is monitored using biomarker signatures – Not only a single biomarker

GARDskin prediction signature 200 genes

Recognition of foreign substances e.g. TLRs, RXR, AHR

Immunological self-defence mechanisms e.g. CD80, CD86



Cellular stress responses e.g. **NRF2**-pathway

Communication e.g. chemotaxis receptors

The GARD platform - how it works

Captures events downstream of **KE1**

Metabolic activity & identifies pre/pro haptens ALDH NAT-1 CYP - Cytochrome p-450

> Keap1-Nrf2-ARE pathway & AHR signalling NQO1

HMOX1

Thioredoxin reductase I

> Pro-Inflammatory cytokines mediating e.g. TNF α , INF γ , IL-8 FAS

FAS MAP2KI COX20

> Inflammasome

NLRP PSTPIP1 > DC migration & maturation

CD86

MAPK- activation

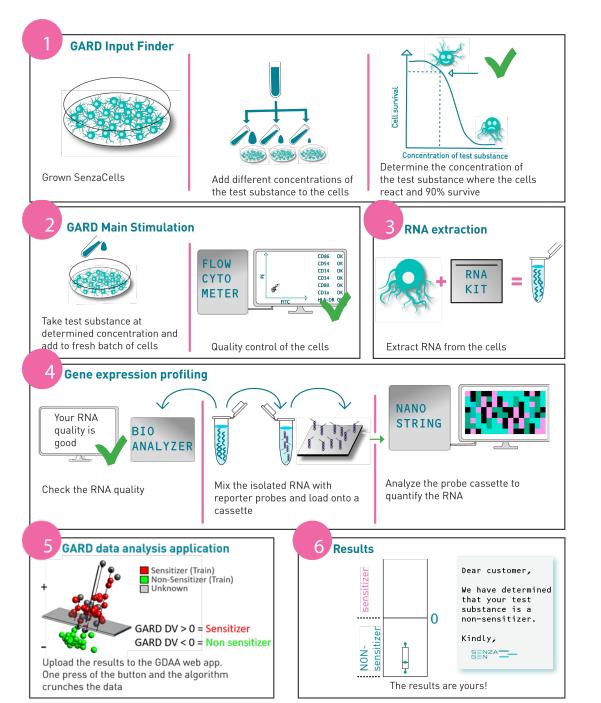
PKA- and GPCR- mediated signalling

> Antigen recognition & Innate immune activation

TLR-4

TLR-6

RXRA – retinoic X receptor


NLRP

PSTPIP1

> Self-defence mechanisms C3a/C5a-activation pathways

Covers the 3 Key steps for T-cell activation:

Antigen presentation Co-stimulation Cytokine secretion

How to **GARD**your product in 6 Steps

GARDskin - Performance data

Data set	Sensitivity	Specificity	Accuracy	Reference
Validation of the GARD assay	93% (51/55)	96% (24/25)	94% (75/80)	Johansson, 2019
Accumulated performance	92% (134/145)	81% (50/62)	89% (184/207)	-

TOXICOLOGICAL SCIENCES, 170(2), 2019, 374-381

doi: 10.1093/toxsci/kfz108

Advance Access Publication Date: May 17, 2019

Research Article

Validation of the GARD™skin Assay for Assessment of Chemical Skin Sensitizers: Ring Trial Results of Predictive Performance and Reproducibility

<u>Henrik Johansson</u>, ¹ <u>Robin Gradin</u>, ¹ <u>Angelica Johansson</u>, ¹ <u>Els Adriaens</u>, ² <u>Amber Edwards</u>, ³ <u>Veronika Zuckerstätter</u>, ⁴ <u>Anders Jerre</u>, ¹ <u>Florence Burleson</u>, ³ <u>Helge Gehrke</u>, ⁴ and <u>Erwin L Roggen</u> ⁵

Within Laboratory Reproducibility:

SenzaGen 82%

Burleson 83%

Eurofins 89%

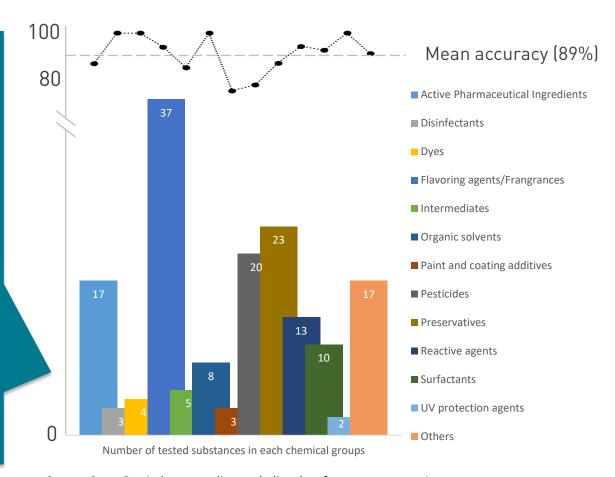
Between Laboratory Reproducibility:

Concordance: 92%

GARDskin & GARDpotency – REACH registration

"The REACH Regulation allows the use of non-adopted in vitro methods in case they meet the EURL ECVAM criteria for entering pre-validation. For the GARD assay this criteria is met, as it is currently being validated."

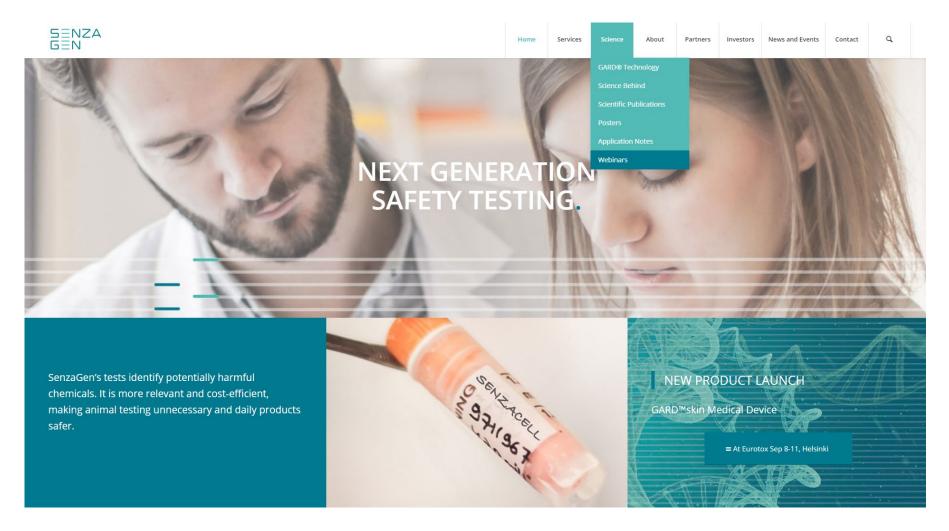
"The current REACH information requirements require that three KEs are examined and GARD assay can be used to assess the KE 3."



GARDskin - Broad applicability domain

The standard assay protocol is applicable for small molecules in general: from cosmetics ingredients to various industrial chemicals, including pre- and prohaptens

SenzaGen and its partners also offer lab services for the explorative assessment of 'difficult-to-test' substances:


- UVCBs
- Natural extracts and mixtures
- Pesticides
- Pharmaceutical ingredients (drug candidates)
- ...and more

Source: SenzaGen in-house studies, excluding data from customer projects

More info at: www.senzagen.com

Case study I - GARDskin for "difficult to test" substances

Why substances can be difficult to test:

Pre/Pro haptens: Activation may be needed to create the allergen.

SenzaCells:

Aldehyde dehydrogenases (ALDH) Cytochrome p-450 (CYP) N-acetyltransferase 1 (NAT-1)

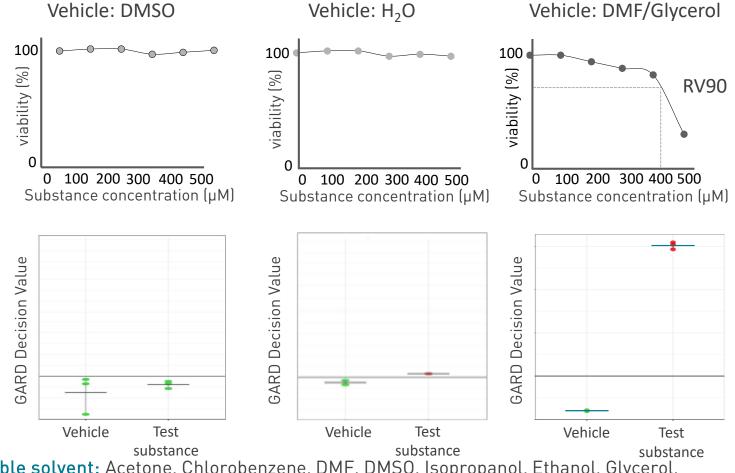
Solubility: High log $P_{o/w}$ value or other properties leading to low solubility in aqueous media.

Case study I - GARDskin for "difficult to test" substances

Compound	Pre/pro hapten	High logP	DPRA (TG442C)	ARE-NRF2 (TG 442D)	h-CLAT (TG442E)	GARD (TGP 4.106)
2-Aminophenol	YES	-	S	S	S	S ¹
2-nitro-1,4-Phenylendiamine	YES	-	S	S	S	S ¹
Aniline	YES	-	NS	NS	S	S ¹
Cinnamic alcohol	YES	-	S	S	S	S ¹
Ethylene diamine	YES	-	NS	S	S	NS ¹
Eugenol	YES	-	S	NS	S	S ¹
Geraniol	YES	-	NS	S	S	S ¹
Hydroquinone	YES	-	S	S	S	S ²
Isoeugenol	YES	-	S	S	NS	S ¹
Linalool	YES	-	NS	NS	S	S ¹
p-Phenylenediamine	YES	-	S	S	S	S ¹
Propyl gallate	YES	-	S	S	S	S ¹
Resorcinol	YES	-	NS	NS	S	S ¹
Farnesol	YES	-	NS	S	S	S ¹
Abietic acid	YES	YES (6.5)	S	S	NS	S ¹
Chlorpromazine	YES	YES (5.4)	NA	NS	S	S ¹
Lauryl gallate	YES	YES (6.2)	S	S	S	S ³
Amylcinnamyl alcohol	YES	YES (4.4)	S	NS	NS	S ¹
Limonene	YES	YES (4.6)	NS	NS	S	S ¹
Benzoyl peroxide	-	YES (3.5)	NS	NS	S	S ³
Hexylcinnamic aldehyde		YES (4.8)	S	NS	NS	S ¹
Isopropyl myristate		YES (8.5)	NS	NS	S	NS ⁴
propyl paraben*1		YES (3.4)	NS	S	S	S ¹
Tocopherol		YES (6.9)	NS	S	NS	S ¹
Accuracy			61%	58%	71%	92%

References:

- ¹ Johansson et al. 2017
- ² Forreryd et al. 2016
- ³ Zeller et al. 2017
- ⁴ Johansson et al. 2019


*Basketter Human potency Class 5

Case study II - Testing of UVCBs

UVCBs: Unknown or Variable composition, Complex reaction products and Biological materials

The challenges: Complexity and uncertainty of compositions; Hydrophobic, often has solubility issues for water-based test systems

Available solvent: Acetone, Chlorobenzene, DMF, DMSO, Isopropanol, Ethanol, Glycerol, Hexane. Olive oil and sesame oil.

Case study II - Testing of UVCBs

Materials & Methods

Test item

7 UVCBs with known average MW

GARDskin

Additional solubility tests performed to select suitable solvents

Results in comparison with existing in vivo data

Test items	Existing data	Existing classification	GARDskin
1	LLNA, Buehler	S, 1B	S
2	LLNA	NS	S
3	LLNA, Buehler	S, 1B	S
4	LLNA	S, 1B	S
5	Buehler, HRIPT	NS	NS
6	LLNA, Buehler, HRIPT	S, 1B	S
7	Buehler	S, 1B	S

Conclusion

GARDskin:

good applicability potential for UVCBs, consistent with *in vivo* data.

The assessment of UVCBs need to be handled case by case.

Case study III - Testing of natural mixtures

Henna: natural dye from Lawsonia inermis.

Henna-based hair colouring products: often considered safer alternatives to synthetic hair dyes containing known skin sensitizers such as p-phenylenediamine (PPD). However, skin allergic reactions to henna products have been reported.

Materials & Methods

Pre study

GARDskin assessment of 10 commonly used hair dye ingredients

Main study

GARDskin assessment of 10 hennabased products (powder mixtures)

HPLC examination of the presence of PPD in the products

*The images are from the internet and only serve as examples of commercially available henna products

This study is a collaboration between Federal University of Goiás, Brazil and Lund University, Sweden. For more details, please see the original publication (de Ávila et al. Contact Dermatitis, 2019)

Case study III - Testing of natural mixtures

Table 1.GARDskin prediction results for commonly used hair dye ingredients

Test materials	Human classification	Animal classification	mDPRA	IL-18	USENS™	GARD™ skin
Reference controls						
Dimethyl sulfoxide	NS	NS	NS	NS	NS	NS
Glycerol	NS	NS	NS	NS	NS	NS
Sodium dodecyl sulfate	NS	S	S	NS	S	NS
DNCB	S	S	S	S	S	S
Eugenol	S	S	S	S	S	S
2-Hydroxyethyl acrylate	S	S	-	-	_	S
Hair dye ingredients						
1,4-Diaminoanthraquinone	S	S	S	S	S	S
2-Amino-3-hydroxypyridine	S	NS	S	S	S	S
Lawsone	NA	Equivocal	S	NS	S	S
5-Amino- <i>o</i> -cresol	S	S	S	NS	S	S
Hydroquinone	S	S	S	S	S	S
<i>p</i> -Phenylenediamine	S	S	S	S	S	S
Resorcinol	S	S	S	S	S	S
Disperse orange 3	S	S	S	S	S	S
Basic red 51	NA	NS	S	S	S	S
Pyrogallol	S	NS	S	S	S	S
Concordance <i>vs</i> . Human data			91.7%	92.3%	92.3%	100%
Concordance <i>vs</i> . Animal data		78.5%	76.9%	64.3%	78.6%	73.3%

Case study III - Testing of natural mixtures

Table 2. GARDskin prediction results for 10 commercial henna-based products

Henna Product	PPD (label)	PPD	mDPRA	IL-18	USENS™	GARDskin™
1		1.091 ± 0.028	S	S	S	S
2	+	2.970 ± 0.046	S	S	S	S
3		0.030 ± 0.001	S	S	NS	S
4		0.032 ± 0.006	S	S	NS	S
5		4.321 ± 0.028	S	S	S	S
6		1.020 ± 0.100	S	S	S	S
7		0.577 ± 0.015	S	NS	S	S
8	+	2.541 ± 0.057	S	NS	S	S
9		0.760 ± 0.017	S	S	S	S
10		3.354 ± 0.163	S	S	S	S

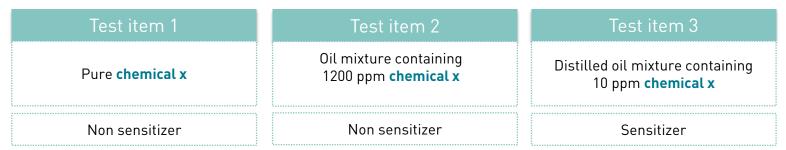
Conclusion

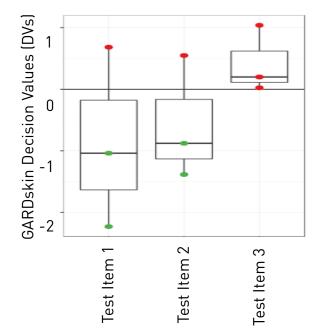
GARDskin show high concordance to human data for testing of hair dye ingredients

GARDskin is applicable for henna-based hair colouring products (powder mixtures).

Case study IV - Testing of oil-based mixtures

The Customer: a leading supplier of natural based functional ingredients/ raw materials for cosmetic and personal care applications


The problem: An oil-based mixture with unpleasant and characteristic smell


- Used as raw materials sold to cosmetic and personal care companies
- The oil-based mixture contains **chemical x** as contaminant, which is the suspect for the unpleasant smell.
- Distillation to get rid of contaminants of chemical x

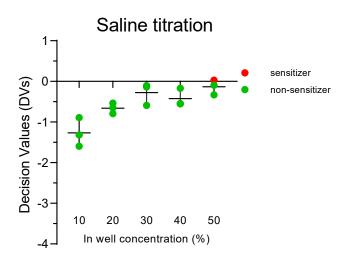
Case study IV - Testing of oil-based mixtures

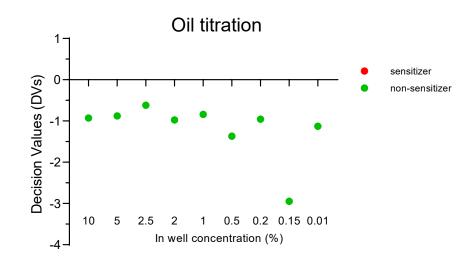
Methods & Results (GARDskin)

Conclusion

This case is a good example of how GARDskin can be used for assessment of oilbased mixtures and essential oils.

Case study V– Testing **Medical Devices** for skin sensitization hazard


In vitro skin sensitization testing in the Biological Evaluation of Medical Devices according to ISO 10993-12:2012


- Use polar and non-polar extraction vehicles according to ISO 10993-12:2012 (saline, sesame oil, super refined olive oil and cell culture media)
- Classify leachables in extracts of medical devices as either skin sensitizers or nonsensitizers
- 200 genomic biomarkers in GARDskin Predictive Signature (GPS)

Case study V– Testing **Medical Devices** for skin sensitization hazard

Extraction steps of solid material follow the international standards for safety assessment of **Medical Device (ISO 10993-12)**.

Case study V– Testing **Medical Devices** for skin sensitization hazard

Table 1. Summary of the results from the in-house validation of GARD®skin Medical Device compared with LLNA (as listed in the CE STTF database) and Human potency classification (HP) for the chemicals (Basketter et al. 2014).

Tost material	Chamical	Sensitizing potential		GARD®skin Medical Device Prediction			
Test material	Chemical	LLNA	HP	Saline	Olive oil	Sesame oil	
	None	N/A	N/A	Non-sensitizer	Non-sensitizer	Non-sensitizer	
	2-aminophenol	Strong	Cat 2	Sensitizer	Sensitizer	Sensitizer	
Silicone	Cinnamic aldehyde	Moderate	Cat 2	Sensitizer	Sensitizer	Sensitizer	
	Propyl gallate	Strong	Cat 2	Sensitizer	Sensitizer	Sensitizer	
	Phenyl benzoate	Weak	Cat 3	Sensitizer	Sensitizer	Sensitizer	
	None	N/A	N/A	Non-sensitizer	Non-sensitizer	Not tested	
TPU	Propyl gallate	Strong	Cat 2	Sensitizer	Sensitizer	Not tested	
	Phenyl benzoate	Weak	Cat 3	Sensitizer	Sensitizer	Not tested	
Silicone tube	-	N/A	N/A	Non-sensitizer	Non-sensitizer	Non-sensitizer	
TPU tube	-	N/A	N/A	Non-sensitizer	Non-sensitizer	Non-sensitizer	
PVC tube	-	N/A	N/A	Non-sensitizer	Non-sensitizer	Non-sensitizer	
Vehicle control	-	Ne	eg	Non-sensitizer	Non-sensitizer	Non-sensitizer	
Positive control	p-Phenylenediamine	Po	os	Sensitizer	Sensitizer	Sensitizer	

Materials & Methods

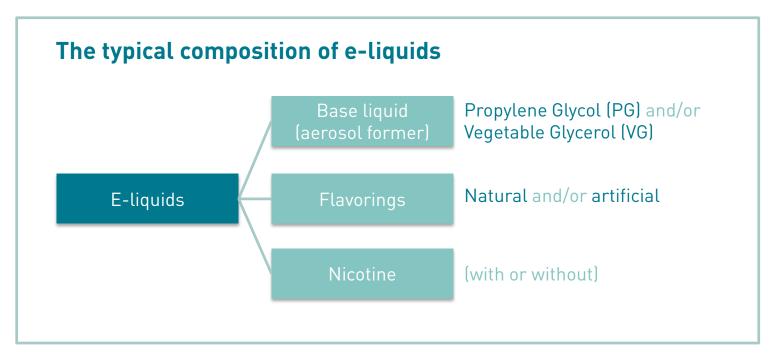
In this customer study, **GARDskin**, **GARDpotency** and **GARDair** were used to predict and compare the skin and respiratory sensitisation potential of **three experimental** and **two commercial e-liquids**. To our knowledge this is the first published study assessing e-liquids using in vitro assays.

Regulatory Toxicology and Pharmacology 103 (2019) 158-165

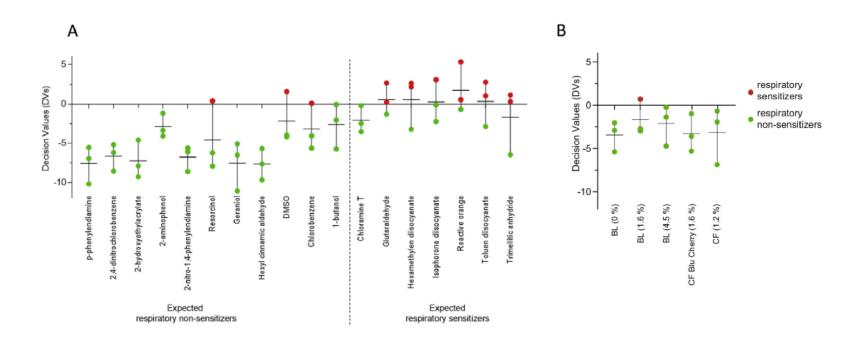
Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

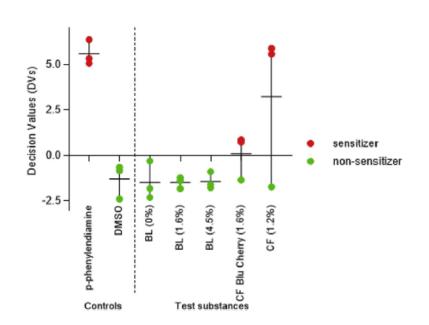
The use of Genomic Allergen Rapid Detection (GARD) assays to predict the respiratory and skin sensitising potential of e-liquids

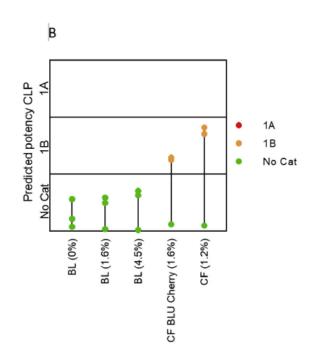


Matthew Stevenson^{a,*}, Lukasz Czekala^a, Liam Simms^a, Nicole Tschierske^a, Olivia Larne^b, Tanvir Walele^a


^a Imperial Brands PLC, 121 Winterstoke Road, Bristol, BS3 2LL, UK

b SenzaGen, Scheelevägen 2, 22381, Lund, Sweden


E-liquids are usually complex mixtures, especially when they include natural flavourings



GARDair prediction

A controls: 5 out of 7 accurately classified as respiratory sensitizers, no false positives. Sensitivity 71%, Specificity 100%, Overall accuracy 89%

GARDskin prediction:

2 commercially available flavoured e-liquids were predicted as skin sensitizers

GARDpotency prediction:

Test substances: 2 commercially available flavoured e-liquids were further classified as weak skin sensitizers (1B)

Composition of test materials. PG: Propylene glycol; VG: Vegetable glycerol; BL: base liquid; CF: commercially available flavoured e-liquid.

Test material	Conten	t [w/w %	6]	
	PG	VG	Nicotine	Other substances (e.g. water, flavourings)
BL 0%ª	50	50	_	-
BL 1.6% ^a	49.2	49.2	1.6	-
BL 4.5% ^a	47.75	47.75	4.5	-
CF Blu Cherry 1.6% ^a	40.4	53.4	1.6	4.6
CF 1.2% ^a	66.5	18.8	1.1	13.6

a % refer to % nicotine content.

Test substance classification with the GARD assay for respiratory sensitisers, GARDskin and GARDpotency assays.

	Respiratory assay	GARDskin	GARDpotency
BL 0%	Non-Sensitiser	Non-Sensitiser	No Cat
BL 1.6%	Non-Sensitiser	Non-Sensitiser	No Cat
BL 4.5%	Non-Sensitiser	Non-Sensitiser	No Cat
CF Blu Cherry 1.6%	Non-Sensitiser	Sensitiser	1 B
CF 1.2%	Non-Sensitiser	Sensitiser	1 B

Conclusion

The GARD platform offers an integrated test strategy for assessment of skin and respiratory sensitization potential of complex mixtures such as e-liquids.

The assays are potentially useful for product development and hazard identification of other types of complex formulations.

The **GARD** platform - How can I

get my substances tested?

Contact us:

We help to design the testing strategy for your specific substances.

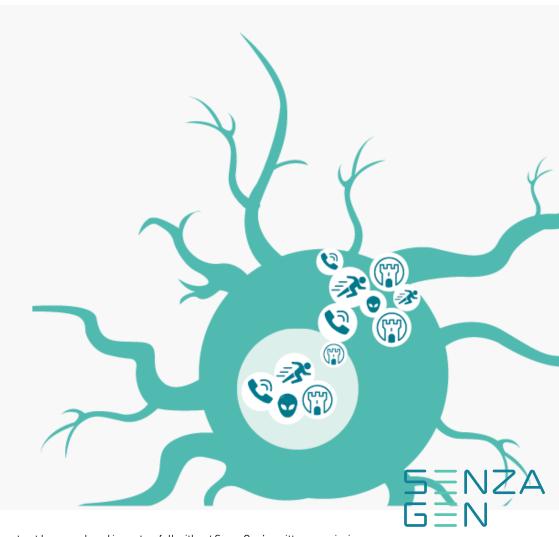
Select assay(s):

GARDskin, GARDpotency, GARDair, GARDskin Medical Device

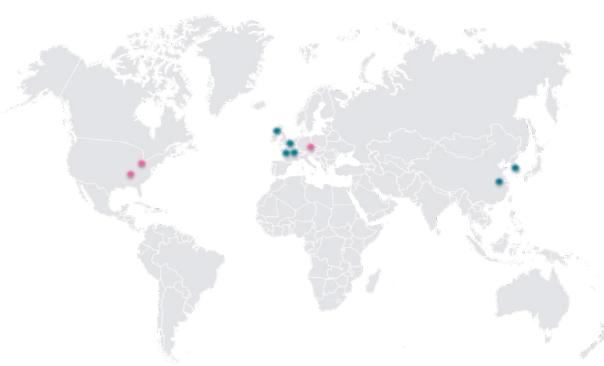
Test Substance Questionnaire:

Do you have information on vehicles? If not, we evaluate it for you.

Turnaround time:


4-6 weeks.

Sample requirements:


0.5 g (solids) or 1 ml (liquids). Can be adapted to lower amounts.

Your preferred testing site:

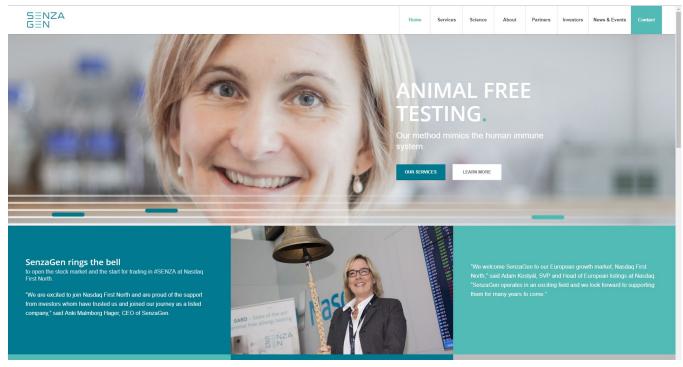
Select where you like to have your testing done.

The **GARD** platform – Where can I get my testing done?

Licence Labs*:

Burleson Research Technologies Eurofins BPT MB Research Laboratories

Distributors*:


Charles River Laboratories
Eurosafe
Guangzhou CHN-ALT Biotech Co., Ltd
PKDerm
Woo Jung BSC
XCellR8

^{*} In alphabetic order

Information and contacts

www.senzagen.com

Andy Forreryd, PhD

Key Account Manager & Scientific Liaison
andy.forreryd@senzagen.com
+46 734331777

Joshua Schmidt, PhD

Business Development Director Americas

Joshua.schmidt@senzagen.com
+1 651.440.5691

