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Summary

The GARD assay is a cell-based transcriptional biomarker assay for the
prediction of chemical sensitizers1 targeting key event 3, dendritic cell
activation, of the skin sensitization AOP. Here, we present a modified assay
based on Random Forest modelling, which is capable of predicting CLP
potency classes (1A - strong sensitizers, 1B - weak sensitizers, no category –
non-sensitizers) as described by the European CLP regulation with an
accuracy of 75 % (no cat), 75 % (1B) and 88 % (1A) based on a test set
consisting of 18 chemicals previously unseen to the model.

We further can link the activation of distinct pathways to the chemical
protein reactivity, showing that our transcriptomic approach can reveal
information contributing to the understanding of underlying mechanisms in
sensitization.

Introduction and Aim

The Genomic Allergen Rapid Detection assay, in short GARD, is based on transcriptomic profiling of a derivative of the cell line MUTZ-3, resembling dendritic cells. It has
been developed for hazard classifications of skin sensitizing chemicals and predicts those with an accuracy of 89 %2. However, risk assessment requires potency
classification of sensitizing chemicals and based on earlier observations, where we have seen a) a correlation between GARD output and human potency, and b) a
differential regulation of signaling pathways dependent on the individual potency of the investigated sensitizers3, we hypothesized, that GARD can be developed into a
tool for potency classification.

Material and Methods

Cells were handled and exposed to chemicals as previously described1 and summarized in Fig. 2 until microarray data was obtained. Training set (n = 70) and test set (n =
18) was defined previous to model construction to represent the three CLP classes and different chemical reactivity groups in a balanced way (Table 2). Microarray data
were normalized using the SCANfast algorithm5 and arithmetic means of the transcript intensities from replicate stimulations in the training set were used to develop
Random Forest models6 , using the VarSelRF package7 in R statistical environment. The predictive biomarker signature comprising 18 transcripts was identified by
minimizing the OOB error rate using bootstrapping, and applied to predict replicate samples in the test set, i.e chemicals previously unseen to the model. Majority votes of
replicate stimulations defined the predicted class. In order to ensure that the training and test set choice were not biased, alternative models were built with randomly
shuffled compositions of training and test set. The number of chemicals in each set and their CLP distribution were kept constant. Pathway analysis was performed with the
Key Pathway Advisor Tool (Thomson Reuters) with lists of 500 most significant genes for sensitizers in each protein reactivity group compared with non-protein binding non-
sensitizing chemicals after initial variance filtration. The lowest p-value was reached when comparing bi-molecular nucleophilic substitution/nucleophilic aromatic
substitution (SN) to “no binding” (p=0.0019), followed by Schiff base chemicals (SB, p=0.0055) and Michael acceptor (MA) samples (p=0.0169).

Chemical true 
CLP  

predicted 
CLP 

Protein reactivity 

1-brombutane no cat 1B SN2 

benzoic acid no cat 1B No binding 

citric acid no cat 1B No binding 

diethyl phthalate no cat no cat No binding 

ethyl vanillin no cat no cat Schiff base formation 

xylene no cat no cat No binding 

anethole 1B 1B Michael acceptor 

benzyl benzoate 1B 1B Acyl transfer agent 

linalool 1B 1B No binding 

lyral 1B 1B Schiff base formation 

butyl glycidyl ether 1B 1B SN2 

diethyl maleate 1B 1A Michael acceptor 

cyanuric chloride 1A 1A SNAr 

propyl gallate 1A 1A Michael acceptor 

bisphenol A-diglycidyl ether 1A 1A SN2 

glutaraldehyde  1A 1A Schiff base formation 

iodopropynyl butylcarbamate 1A 1B Acyl transfer agent 

p-benzochinone 1A 1A Michael acceptor 

 

Table 2. 
Training and test set 
composition.

Table 1. Test set CLP and reactivity information.

Results and Discussion

We here present a potency prediction approach based on a Random Forest model
and 18 transcripts. 18 chemicals previously unseen to the model were classified as
shown in Tables 1, 4 and Fig. 1. Interestingly, diethyl maleate, misclassified as 1A
instead of 1B, is a human potency class 2 according to4, and iodopropynyl
butylcarbamate, wrongly predicted as 1B instead of 1A, is classified as human
potency class 44. Thus, the model seems to show more agreement with human data
than CLP classifications (mainly derived from animal data) based on this limited
dataset. Also Fig. 1C supports the hypothesis, that both data and model contain
information allowing the prediction of human potency.
Furthermore, Key Pathway Advisor analysis reveals that these data can be used to
investigate the cellular response in more detail (Table 3). In conclusion, we show that
the modified GARD assay is capable of providing potency information, which is
imperative for quantitative risk assessment of chemical sensitizers.Fig. 2. Flow scheme of the standard GARD assay.

Table 3. Pathways unique for each of three protein reactivity groups.
Five pathways related to cell cycle regulation, apoptosis/survival and DNA damage were 
common to all reactivity groups (not shown).

 Training 
set 

Test 
set 

total 70 18 
CLP 1A 
CLP 1B 
CLP no cat 

23 
25 
22 

6 
6 
6 

 

Table 4. 
Prediction statistics.

Fig. 1. Principal component analysis plot (Qlucore, Sweden) of (A) the training set, (B) the test set, and (C) 
test set samples with available human potency classifications4 based on an input of 18 variabels identified
by the Random Forest model.

A B C

 Sensi- 
tivity 

Speci- 
ficity 

Balanced 
accuracy 

No cat 0.500   1.000 0.750    

1A 0.833   0.917   0.875    

1B 0.833 0.667 0.750 
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