Joint poster with RIFM and IFF: PoD determination of fragrance materials

GARDskin Dose-Response assay for PoD determination of fragrance materials and its application in conducting Quantitative Risk Assessment (QRA)


Presented at SOT 2023


Download a copy

 

 

Conclusion

  • The continous readout from the assay is reproductible and the assay predicts LLNA EC3 and human NESIL values with high correlation to reference benchmark data (geometric mean fold-misprediction factors of 3.8 and 2.5 respectively).
  • The assay provides a nice tool for the fragrance industry to predict the NESIL value to be used for conducting the quantitative risk assesment for generating the IFRA standard.

Abstract

The global fragrance industry applies Quantitative risk assessment (QRA) to develop risk management practices (IFRA Standards) for ingredients that are identified as potential dermal sensitizers. An important step in QRA is determination of a ”No Expected Sensitization Induction Level” (NESIL), which has historically been determined using human data with the support of animal data (e.g., murine local lymph node assay (LLNA). The EC3 value determined in the LLNA is used as the guidance for selection of the dose level in HRIPTs (Human Repteated Insult Patch Test) to confirm a NESIL value. The fragrance industry has adopted new approach methodologies (NAM) to address skin sensitization. Although several NAMs for identifying skin sensitizers have been accepted as Test Guidelines by OECD, these methods have thus far been validated only for hazard identification. Since a NESIL value is a key requirement to evaluate sensitizing potency for conducting QRA evaluations, development of a NAM-based strategy capable of providing potency data in the form of NESIL remains a high priority for the fragrance industry. The in vitro GARDskin assay was recently adopted by the OECD (TG 442E) for the hazard identification of skin sensitizers. Continuous potency predictions are derived using a modified protocol that incorporates dose-response measurements. Linear regression models have further been developed to predict LLNA EC3 and human NESIL values. The aim of the study was to evaluate the precision and reproducibility of the continuous potency predictions from the GARDskin Dose-Response assay. A total of 17 test materials were evaluated, 11 of which were evaluated in three blinded studies separated in time. Preliminary results indicated that the GARDskin Dose-Response model predicted LLNA EC3 values and human NESIL values with geometric mean fold-misprediction factors of 3.8 and 2.5, respectively. For comparative reasons, the LLNA EC3 predicted the human NESIL values with a fold-misprediction factor of 3.7 in the same dataset. Results from the repeated assessment of the test materials were reproducible, with an estimated geometric mean range of fold-changes between replicates of 2.9. Using isocyclocitral (CAS 1335-66-6) as an example, a QRA was conducted to determine its safe use levels in different consumer product types. The results demonstrate that the LLNA EC3 values and the human NESIL values predicted from the GARDskin Dose-Response assay are reproducible between experiments and show good concordance with the published NESIL and EC3 values. Together with the reported performance data, this represents a major step towards the establishment of the assay as a relevant source of information to derive NESIL values for conducting QRA evaluations for fragrance materials to ensure product safety while avoiding the generation of new animal data.

 

 

 

 

In vitro assays for assessment of the skin sensitization hazard and potency of isobornyl acrylate

Presented at SOT 2023

In vitro assays for assessment of the skin sensitization hazard and potency of isobornyl acrylate

Rose-Marie Jenvert1, Olivia Larne1, Ulrika Mattson1, Robin Gradin1, Kelly P Coleman2 and Andy Forreryd1  1SenzaGen, Lund, Sweden, 2Medtronic, Minneapolis, USA

 

Download a copy

 

Conclusion

The GARDskin Medical Device assay can be used

  • with the extraction vehicles saline and oil as described 
    in ISO 10993. 
  • to detect low concentrations of skin sensitizers in a mixture and have the potential to replace in vivo tests 
    for risk assessment of skin sensitizers in medical devices. 
  • as risk assessment tool in combination with the 
    GARDskin Dose-Reponse assay during development of medical devices containing acrylates. 

Abstract

Acrylates have a wide range of applications for medical devices as they can bring several advantages  such as transparency, super-absorbency and hardness in combination with flexibility. The manufacturing of acrylic materials typically involves using at least one monomer of either acrylate or methacrylate which react to form a polymer. Several methodologies can be used for polymerization and the degree of polymerization of the final material can vary, hence some products can contain more residual monomers than others, and human exposure to these well-known skin sensitizers may increase the risk of developing the adverse immunological response, allergic contact dermatitis.

In 2020, the acrylate monomer, isobornyl acrylate (IBOA; CAS 5888-33-5), was named allergen of the year by American Contact Dermatitis Society due to the increased number of patients that were sensitized to IBOA found in glucose sensors and glucose pumps. IBOA is also present in other medical devices as plastic materials, coatings, sealants, glues, adhesives and inks. As a result, it is important to find alternatives to the animal methods used today to assess skin sensitization to properly identify the skin sensitizing potential of IBOA in medical devices and avoid the risk of sensitizing more individuals to this chemical.

The GARDskin (OECD TG 442E) assay, initially developed for hazard identification of a wide range of skin sensitizers, has been adapted for use with polar and non-polar solvents as described in ISO 10993-12:2021 and can be applied to assess the skin sensitization of medical devices. Further development of the GARDskin protocol has also enabled the prediction of skin sensitization potency by using a dose-response measurements. The cDV0 value derived from the assay corresponds to the lowest concentration required to exceed a binary classification threshold in GARDskin, and this concentration correlates significantly with LLNA EC3 and human NOEL values.  Linear regression models have been established to exploit these relationships for potency predictions.

In this study, we explored the ability of GARDskin Medical Device assay to detect the skin sensitizing potential of IBOA in a mixture of chemicals extracted from a silicone material (Nunsil MED-2000) in both saline and oil extract. Additionally, the skin sensitizing potency of IBOA was also investigated using the novel GARDskin Dose-Response assay. The acrylate monomer, IBOA, was correctly classified as a skin sensitizer in extracts of the silicon material spiked with IBOA using the GARDskin Medical Device assay. The correct classification of IBOA as a skin sensitizer provides evidence that the GARDskin Medical Device assay is sensitive enough to detect low concentrations of device-related skin sensitizers in a mixture of extracted chemicals and hence has the potential to replace in vivo tests for risk assessment of medical devices. Furthermore, IBOA was classified as a strong to moderate skin sensitizer (HP 2) with a predicted LLNA EC3 value of 0.848% and human NOEL value of 230 µg/cm2 using the GARDskin Does-Response assay. These predictions agree with existing human data and information from the ECHA registration dossier, illustrating the potential of the GARDskin Dose-Response assay to replace in vivo tests for quantitative potency assessment of potential skin sensitizers.

Joint poster with RIFM: ​Assessment of Reference Photoirritants and Photoallergens using GARD

GARD®skin Dose-Response for Photosensitization: ​Assessment of Reference Photoirritants and Photoallergens


Presented at SOT 2023

 

Download a copy

 

Conclusion

  • Increase in cytotoxicity after UV exposure strongly linked with predominantly photo irritating properties.
  • Decrease in GARDskin Dose-Response cDV0-value after UV exposure indicative of photoallergenic properties​.

Abstract

Dermal exposure to certain chemical compounds, so-called sensitizers, can give rise to adverse outcomes induced by an immunological response towards the specific compound. One such class of compounds, photosensitizers, needs to be activated by UV rays to elicit an immune response. Although rare in occurrence, it is a critical human health endpoint in need of investigation to limit potential exposures. Other phototoxic skin reactions include photoirritation, which is manifested as a one-time occurrence at the site of exposure that goes away over time. While testing schemes for photoirritation are clear, testing for photosensitization remains a challenge and no established in vitro model to evaluate this endpoint currently exists. For risk management purposes, distinguishing between phototoxic properties is important, as concentration limits can be set for photoirritants whereas fragrance photoallergens have historically been banned. 

The GARDskin assay is a next-generation in vitro method for hazard classification of conventional skin sensitizers, included in OECD TG 442E. The assay is based on a human dendritic -like cell line and combines genomics and machine learning to achieve a high predictive performance with a large applicability domain. The GARDskin Dose-Response assay is based on the validated GARDskin protocols but instead of giving a binary classification it provides quantitative information about the lowest concentration needed to induce a positive classification in the assay, termed the cDV0 concentration. To investigate phototoxicity, an extra UV-exposure step was added to the original protocol, with photosensitization determined by a drop in cDV0 concentration after UV-exposure, i.e., the cDV0 concentration of the specific compound is lower after UV-exposure than in the non-exposed counterpart.  

The study presented here aimed at investigating the applicability of the GARDskin Photo Dose-Response assay to correctly assess photoallergens and distinguish them from photoirritant effects. Previous studies have indicated that a shift in cytotoxic profile after UV-exposure may indicate a predominantly photoirritant activity rather than photosensitizing and this was also investigated in the present study. Six reference photoirritants and six reference photoallergens were investigated using the GARD®skin Dose-Response assay in combination with a UV irradiation protocol. Cytotoxic profiles and cDV0-values were established for each compound in the presence and absence of UV exposure. 5 out of 6 photoirritants were correctly predicted based on their cytotoxic profile while 3 out of 6 photoallergens where correctly predicted based on the decrease in cDV0-value after UV-exposure. In conclusion, functionality of combining GARDskin Dose-Response protocols with UV irradiation to investigate phototoxicity was shown. Further, photoirritant effects were strongly correlated to a shift in cytotoxic profile after UV-exposure and a decrease in cDV0 values after UV-exposure may indicate on photosensitizing effects. However, further work may be warranted to establish a final prediction model for photosensitization.  

Keywords: Predictive Toxicology, GARDskin, Phototoxicity, Quantitative Risk Assesment

 

 

 

 

Joint poster with ExxonMobil: Case study on UVCBs and Formulated Lubricant Products

Assessing the Utility of the Genomic Allergen Rapid Detection (GARDskin) Assay to Detect Dermal Sensitization Potential in UVCBs and Formulated Lubricant Products


Presented at SOT 2023

Download a copy

Summary

  • GARD®skin is considered to provide useful information in an overall weight of evidence assessment for difficult to test materials (mixtures, UVCBs) with challenging physical chemical properties.
  • The accuracy for prediction of skin sensitization hazard ranged from 66% for formulated lubricants/greases to 100% for synthetic base oils compared to expected outcomes based on reference data.

Abstract

Advances in new approach methods and their combinations into defined approaches can provide clarity and confidence in concluding on skin sensitization potential. However, challenges remain in utilizing these approaches for difficult to test materials such as those with challenging physical chemical properties (low water solubility, hydrophobic substances) or complex compositions like Unknown or Variable Composition Complex reaction products or Biological Materials (UVCBs) and formulated mixtures. The previously developed available non-animal test methods for skin sensitization based on key-events of the adverse outcome pathway (AOP) have clearly defined requirements for test material properties that impact feasibility or confound reliance on negative results particularly for difficult to test materials and impedes the application of defined approaches to conclude on skin sensitization hazard. A set of difficult to test materials were evaluated in the recently validated GARDskin assay since it offered advantages such as a broader applicability domain, availability of additional validated test solvents for poorly soluble materials and provides mechanistically relevant information on key events from across the skin sensitization AOP. The aim of the study was to evaluate the accuracy of the GARDskin assay for a set of synthetic base oils (UVCBs), lubricant additives (UVCBs/poorly soluble substances) and fully formulated lubricants/greases (mixtures) as well as to provide additional information to assist in a weight of evidence determination given that several of the test materials had borderline or conflicting data from other key events within the skin sensitization AOP. All test items were adequately solubilized in one of the following solvents, Ethanol (0.1% final), DMSO (0.25% or 0.1% final), or Xylenes (0.1% final). SenzaCells were incubated in triplicate under standard conditions with the test items at a max concentration of 500uM for those with a known molecular weight or 100 ppm (w/v) for those without a known molecular weight. Following cell stimulations, RNA was isolated and endpoint measurements were performed using the GARDskin genomic profile signature. Based on the results of this study, the accuracy for prediction of skin sensitization hazard was 100% for synthetic base oils (n=4), 83% for lubricant additives (n=6), and 66% for formulated lubricants/greases (n=6) compared to expected outcomes based on available reference data. In some cases, the available reference data was borderline or considered to have low confidence due to confounding factors such as irritation, and nonmonotonic dose responses impacting the accuracy determination when compared one to one with either animal or human data. However, the GARDskin assay is considered to provide useful insight into the overall weight of evidence for difficult to test materials with conflicting datasets as it provides an additional profile of bioactivity across the skin sensitization adverse outcome pathway.