The GARDskin Assay: Investigation of the Applicability Domain of Indirectly Acting Haptens

Presented at the 2022 SOT

Tim Lindberg1, Andy Forreryd1, Robin Gradin1 and Henrik Johansson1
1SenzaGen, Lund, Sweden

Download a copy



  • The GARD®skin assay can accurately predict indirectly acting haptens and has the capacity to assess both pre- and pro-haptens as skin sensitizers.
  • No increased risk of false negative classifications due to possible limitations in metabolic capacity of the cell system.


Hypersensitivity reactions in the skin, clinically manifested as Allergic Contact Dermatitits (ACD), are caused by the ensuing immunological response to low-molecular weight compounds termed skin sensitizers. Such substances, often referred to as haptens, have the inherent property to react with skin proteins and form immune inducing complexes. However, indirectly acting haptens need to be transformed to protein-reactive intermediates either through biotic (pro-hapten) or abiotic (pre-hapten) conversion in order to elicit an immune response.

Conventionally, safety tests of skin sensitizers have been done using animal experiments, but New Approach Methodologies (NAMs) have been developed over the past decades to replace the use of animals in such testing. However, one potential problem faced with the in vitro and in chemico alternatives is the lack of metabolic and chemical activity as compared to an in vivo system, which in turn may lead to false predictions for pre- and pro-haptens.

The GARDskin assay is a next-generation NAM for hazard classification of skin sensitizers. The assay is based on a human dendritic -like cell line and combines genomics and machine learning to achieve a high predictive performance with a large applicability domain. Currently, the method is approaching regulatory acceptance as an OECD test guideline.

The study presented here aimed to explore the applicability domain of the GARDskin assay, specifically the capability to predict indirectly acting haptens. Available data obtained from GARDskin testing of indirectly acting haptens were compiled, resulting in a set of 28 substances. Further subcategorization identified 5 pro-haptens and 11 pre-haptens, while 12 substances were unable to be unambiguously assigned as either exclusively a pro- or a pre-hapten, due to the dual nature of the protein-reactive activity. Skin sensitizing hazard sensitivity of indirectly acting haptens (n=28) was 89% (25/28) while pro-haptens (n=5) and pre-haptens (n=11) were 80% and 100%, respectively. These data support GARDskin applicability in the domain of indirectly acting haptens, demonstrating that the method has the capacity to accurately assess both pre- and pro-haptens.