The use of GARDskin for sensitization evaluation of cosmetic ingredients and ‘real-life’ mixtures
Renato Ivan de Ávila, Tim Lindbergh, Malin Lindstedt and Marize Campos Valadares
Lab. of Education and Research in Pharmacology and Cellular Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil.
Department of Immunotechnology, Medicon Village, Lund University, Lund, Sweden.
Introduction
Genomic fingerprints in dendritic cells after chemical exposure is a recent strategy in in vitro techniques for skin sensitization hazard. Within this perspective, Genomic Allergen Rapid Detection (GARDskinTM), an assay based on a support vector machine (SVM) model, was developed for identifying contact allergens using a myeloid cell line as a surrogate for dendritic cells. Predictive system behind the GARDskin™ consists on the transcriptional quantitative analysis of 200 genes, referred as the GARDskin™ prediction signature. Mechanistically, GARDskin™ is linked to key event 3 “Activation of DCs”, as defined by the Adverse Outcome Pathways for skin sensitization published in 2012 by OECD (https://read.oecd-ilibrary.org/environment/the-adverse-outcome-pathway-for-skin-sensitisation-initiated-by-covalent-binding-to-proteins_9789264221444-en#page1)
Resluts
Information declared on the label and lawsone and PDD levels found in ten commercial henna-based hair coloring cosmetics are show in Table 1. Since all products analyzed were declared as henna cosmetics by the manufactures, the presence of LAW, the main active phytochemical of henna, was then expected in all samples. However, HPLC analysis showed no LAW level in the product nº 2, suggesting falsification. Furthermore, the presence of PPD was declared on the products nº 2 and 8 only by the manufactures. However, this substance was detected in all products, suggesting undisclosed adulteration.
Poster:
The use of GARDskin for sensitization evaluation of cosmetic ingredients and ‘real-life’ mixtures