blue senzagen logo

SenzaGen AB, a diagnostic spin-off company from Lund University, reports the launch of a new product for respiratory sensitization testing

SenzaGen AB is a diagnostic company working to replace animal testing for sensitization predictions.

“Sensitization through the lung is a growing issue and methods to predict if a chemical has a sensitization effect are limited”, says Anki Malmborg Hager, CEO in SenzaGen. Based on extensive research about the responses of the immune system in allergic reactions, SenzaGen has now launched a test that predicts the respiratory sensitization ability of chemicals based on the GARD methodology.

An international scientific article about the underlying research has been published in PLOS ONE, under the title “Prediction of Chemical Respiratory Sensitizers Using GARD, a Novel In vitro Assay Based on a Genomic Biomarker Signature”. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118808

SenzaGen´s first product, a skin sensitization test of chemicals, is already on the market.

Prediction of chemical respiratory sensitizers using GARD, a novel in vitro assay based on a genomic biomarker signature.

PLoS One. 2015 Mar 11;10(3):e0118808. doi: 10.1371/journal.pone.0118808. eCollection 2015.

Forreryd A., Johansson H., Albrekt AS, Borrebaeck CA, Lindstedt M.

Abstract

BACKGROUND:

Repeated exposure to certain low molecular weight (LMW) chemical compounds may result in development of allergic reactions in the skin or in the respiratory tract. In most cases, a certain LMW compound selectively sensitize the skin, giving rise to allergic contact dermatitis (ACD), or the respiratory tract, giving rise to occupational asthma (OA). To limit occurrence of allergic diseases, efforts are currently being made to develop predictive assays that accurately identify chemicals capable of inducing such reactions. However, while a few promising methods for prediction of skin sensitization have been described, to date no validated method, in vitro or in vivo, exists that is able to accurately classify chemicals as respiratory sensitizers.

RESULTS:

Recently, we presented the in vitro based Genomic Allergen Rapid Detection (GARD) assay as a novel testing strategy for classification of skin sensitizing chemicals based on measurement of a genomic biomarker signature. We have expanded the applicability domain of the GARD assay to classify also respiratory sensitizers by identifying a separate biomarker signature containing 389 differentially regulated genes for respiratory sensitizers in comparison to non-respiratory sensitizers. By using an independent data set in combination with supervised machine learning, we validated the assay, showing that the identified genomic biomarker is able to accurately classify respiratory sensitizers.

CONCLUSIONS:

We have identified a genomic biomarker signature for classification of respiratory sensitizers. Combining this newly identified biomarker signature with our previously identified biomarker signature for classification of skin sensitizers, we have developed a novel in vitro testing strategy with a potent ability to predict both skin and respiratory sensitization in the same sample.

Link to article on line

GARD – Genomic Allergen Rapid Detection. A Testing Strategy for Assessment of Chemical Sensitizers

Doctoral thesis
defense date 2013-06-05 09:00     ISBN978-91-7473-519-2

Johansson, Henrik LU

Abstract (Swedish)

Popular Abstract in Swedish

Vi lever i en tid och i ett samhälle där kemikalier har blivit en naturlig del av vår industrialiserade vardag. Till stor del ligger kemikalieindustrin bakom flera av de stora tekniska framsteg som gör att västvärlden har den levnadsstandard den idag har. Tyvärr har den stora spridningen av icke naturligt förekommande kemikalier ibland också negativa effekter både på miljö och hälsa. Ett stort antal tungmetaller har visat sig ackumuleras i naturliga näringskedjor, för att slutligen lagras i mänsklig vävnad, med ännu ej helt fastställda konsekvenser. Flera kemiska bekämpningsmedel slår hårt mot naturliga ekosystem, men har också visat sig påverka människors hormonella balans, vilket bland annat… (More)

Abstract

The modern world is increasingly dependent of the use of chemicals. The chemical industries have greatly contributed to the high standard of living in industrialised societies, and chemical compounds surround us in everyday life. Unfortunately, a vast number of chemicals cause adverse effects on the environment and human health. One such concern is chemical hypersensitivity, which is a state caused by the human immune system. Upon exposure of certain chemical substances, the body will in some instances mount immunologic responses, giving rise to clinical symptoms such as irritation and damage on skin and impaired function of the respiratory tract.

In order to limit the usage of chemical compounds that induce…more